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Rigorous Proof of Luttinger Liquid Behavior in the 1d
Hubbard Model
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We give the first rigorous (non perturbative) proof of Luttinger liquid behav-
ior in the one dimensional Hubbard model, for small repulsive interaction and
values of the density different from half filling. The analysis is based on the
combination of multiscale analysis with Ward identities based on a hidden and
approximate local chiral gauge invariance. No use is done of exact solutions or
special integrability properties of the Hubbard model, and the results can be
in fact easily generalized to include non local interactions, magnetic fields or
interaction with external potentials.

KEY WORDS: Interacting fermions; spin; Ward identities; Renormalization
Group.

1. INTRODUCTION

1.1. Historical Remarks

The Hubbard model describes electrons in a crystalline lattice, hopping
from one site of a lattice to another and interacting by a repulsive (Cou-
lomb) force with coupling U >0. Such a model in the theory of interacting
electrons has the same role of the Ising model in the problem of spin-
spin correlations, that is it is the simplest model displaying many real word
features: it is however much more difficult to analyze. It is believed that
the Hubbard model gives a correct description of the properties of many
metals due to the interactions between conduction electrons: for instance
the phenomenon of Mott transition, the anomalous properties of high Tc
superconductors or the singular properties of quantum wires. However the
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mathematical complexity of the computations is such that this belief is still
far from be substantiated by solid arguments. While our understanding of
the Hubbard model in higher dimensions is really poor, the situation is of
course better in d = 1; the interest in such a case is not purely academic
as in this case the model is believed to furnish an accurate description of
real systems like quantum wires.

In the sixties Lieb and Wu(18) solved the 1d Hubbard model by using
a lattice version of the Bethe ansatz.(2) It appeared that eigenstates of
the 1d Hubbard model can be constructed by solving a complicate set
of equations essentially identical to the ones already solved by Gaudin(14)

and Yang(26) in the context of fermions with δ-interactions. If only the
states of Bethe ansatz form are considered, one sees that the system is
insulating at half filling and conducting away from half filling. Not all
the states are Bethe ansatz states; however it was shown in ref. 10 that
in the half filled band case all the remaining states can be obtained from
the Bethe ansatz states using the SO(4) symmetry of the model. Recently
Lieb and Wu have reconsidered in ref. 18 their analysis of the 1d Hubbard
model and have outlined a strategy for a proof that the lowest energy state
of Bethe ansatz form is really the ground state; in particular it was shown
that such a property can be deduced from two assumptions: (a) that such
a state is a continuous function of the coupling U and (b) that its norm
is not identically zero. Such two properties were recently proved in ref. 13
in the half filled band case. Of course many other results were derived by
Bethe ansatz solution, see for instance refs. 20 and 25.

While the analysis by Bethe ansatz gives very non trivial informations
on the spectrum, it is essentially of no utility for computing the correla-
tions, which are the quantities more directly related to physical observables;
even if one has the full form of the wave functions (what is actually not the
case, as the Bethe ansatz gives them as the solutions of complicate integral
equations), computing the correlations from them is essentially impossible.
In particular, an important question which cannot be answered by the exact
solution is if the Hubbard model is a Fermi liquid or a Luttinger liquid.
The notion of Luttinger liquid was introduced by Haldane(16) in the early
eighties. While a Fermi liquid is an interacting fermionic system whose low
energy behavior is close to the one of the free Fermi gas, a Luttinger liq-
uid behaves as the Luttinger model; a model describing spinless fermions in
the continuum with linear dispersion relation and short-range (non local)
interaction. The linear dispersion relation has the effect that infinitely many
unphysical fermions must be introduced to fill the “Dirac sea” of states with
negative energy. This makes the model a bit unrealistic and of no direct
applicability to solid state physics but, on the other hand, the choice of a
linear dispersion relation has the effect that, contrary to all other models of
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interacting fermions, the Luttinger model correlations can be explicitly com-
puted, see ref. 19. The popularity of the Luttinger liquid notion increased
greatly after Anderson’s proposal(1) that the high-Tc superconductors are, in
their normal phase, Luttinger liquids; this proposal was based on the conjec-
ture that the Hubbard model in one or two dimensions has a somewhat sim-
ilar behavior, and in particular that they both show Luttinger liquid behavior
at least for some range of the parameters. Up to now there is no agree-
ment even at an heuristic level on theoretical evidence of Luttinger liquid
behavior in the d= 2 Hubbard model. On the other hand Anderson’s pro-
posal stimulated a number of studies about the Luttinger liquid behavior in
d=1, as a natural prerequisite to understand the same question in d=2.

Numerical simulations of the correlation functions gave evidence(21)

that the d = 1 Hubbard model is indeed a Luttinger liquid; subsequent
analytic (but heuristic) results by refs. 22 and 11 confirmed this result for
large values of U , finding also that the correlations verify an important
property, the spin-charge separation. For small U the evidence for Luttin-
ger liquid behavior is based on the two following facts:

(1) The d = 1 Hubbard model should be equivalent, as far as low
energy property are considered, to a generalization of the Luttinger model
to spinning fermions, the so called g-ology model (with a suitable choice of
the couplings).

(2) Contrary to the Luttinger model, even the g-ology model is not
solvable. However Solyom(24) by Renormalization Group (RG) analysis
truncated at two loops showed that the g – ology model scales iterating
the RG to the Mattis model, a model which is indeed exactly solvable and
which shows Luttinger liquid behavior.

Given the above two facts, the formulas for the correlations of the
d=1 Hubbard model are usually approximated with the formulas for the
correlations of the Mattis model, see for instance ref. 24; this is however
quite unsatisfactory for a number of reasons.

(1) Assuming the equivalence of the Hubbard with the g-ology model
means that the effects of the lattice and the corresponding Umklapp scat-
tering terms in the Hubbard model are completely neglected, as the g-
ology model is a continuum model with linear bands. There are however
strong indications that this approximation gives completely wrong predic-
tions at least for properties like the thermal or electric conductivity.(23)

(2) The conclusion of ref. 24 that the Hubbard model scales iterat-
ing the RG toward the Mattis model is based on a number of peculiar
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cancellations in the perturbative expansion, checked up to two loops. Of
course, without an argument stating that the cancellations are present at
any order, this conclusion is only perturbative and not very solid; if at
higher orders the cancellations were not present, the effective coupling
constants could increase without limit making the analysis meaningless.

As a conclusion, the enormous number of results on the d = 1
Hubbard model can be roughly divided in two main classes. A first class
are the exact results, based on the Bethe ansatz approach. They are (essen-
tially) rigorous but they give no informations on the behavior of the
correlations. Moreover they are not very robust, as they rely on delicate
integrability properties of the Hubbard model and cannot be used to face
apparently harmless modifications of the Hubbard model (for instance
considering nonlocal but short ranged interactions). The second class of
results is obtained by a combination of techniques (numerical simulations,
bosonization, Renormalization Group) and indeed they give informations
on the correlations, but these results are not rigorous.

1.2. The Luttinger Liquid Construction

In a series of paper(4–7) a general proof of Luttinger liquid behavior
for spinless interacting fermions (without any use of exact solutions) has
been completed. The conclusion is that interacting spinless fermions are
generically Luttinger liquids (independently from the dispersion relation,
the presence of a lattice, the sign of the interaction, etc). A perturbation
theory based on Renormalization Group ideas is constructed, and the cor-
relations are written as a series not in the strength of the interaction but
in terms of a set of parameters called running coupling constants, describ-
ing the effective interaction at a certain momentum scale; the expansion is
proved to be convergent (and analytic) if the running coupling constants
are small, see ref. 4, as a consequence of suitable determinant bounds for
the fermionic truncated expectations. On the other hand, the property that
the running coupling constants remain in the convergence radius of the
expansion is not trivial at all and is due to remarkable cancellations at any
order in the expansion. More exactly, the running coupling constants ver-
ify a set of recursive equations, whose l.h.s. is called Beta function, and
their boundedness is a consequence of dramatic cancellations happening
at any order in the Beta function. In order to prove such cancellations
one decomposes the Beta function in the sum of two terms; one, called
dominant part, which is common to all spinless d = 1 Fermi system, and
the second part which depends on the specific model and which gives a
bounded flow once one has proved that the dominant part is asymptotically
vanishing. The problem is then reduced to the vanishing of the dominant
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part of the Beta function,which coincides with the complete Beta function
of a model, called reference model, describing interacting spinless fermions
with an ultraviolet and infrared cutoff. The proof of vanishing of the Beta
function is then reduced to the proof of suitable (highly non trivial) Ward
Identities between the correlation functions of the reference model,(6) for
any value of the infrared cutoff. The problem of implementing Ward iden-
tities in a model with cutoffs (and in a Renormalization Group scheme)
is a well known problem in Quantum field theory or condensed matter
physics. In refs. 5 and 7, a solution for this problem was given by finding
suitable Correction Identities relating the corrections to the Ward Identities
due to cutoffs to the correlations themselves. By combining the Ward and
the Correction Identities the vanishing of the reference model Beta func-
tion is proved and the rigorous construction of the correlation functions
for spinless Luttinger liquid is then completed.

Aim of this paper is the extension of the Luttinger liquid construc-
tion to the d = 1 Hubbard model; such extension is not straightforward
at all as the Luttinger liquid is not the generic state of spinning inter-
acting fermions. The conditions of repulsive interaction U > 0 and not
half filling must be imposed; technically this is reflected from the fact that
the expansions we find cannot be analytic in a circle around U = 0, as it
would be in the spinless case, and U must be chosen smaller and smaller
as we are closer and closer to half-filling. We will define an expansion
for the correlations in terms of running coupling constants, but the pres-
ence of the spin increases greatly their number; crucial symmetry con-
siderations (based on the SU(2) spin invariance of the Hubbard model)
and geometrical constraints reduce the number of the effective interac-
tions (which is one in the spinless case) to three (in the not half-filled
band case) or four (in the half filled band case). Again the running cou-
pling constants verify a recursive relation, whose r.h.s. is called Beta func-
tion, and the expansion is meaningful only if the running coupling con-
stant are small at any momentum scale. One can decompose the Beta
function in a dominant part and a rest; it turns out however that the
dominant part is not vanishing. Calling the three (in the not half filled
case) effective interactions g1, g2, g4, it turns out that, truncating the beta
function at the second order, g1 tends to vanish (if U > 0) while g2, g4
remains close to their initial value. In order to prove that such a result
is valid non perturbatively, that is including all orders contributions, one
has to prove a property which we will call partial vanishing of the Beta
function. Such property is derived by a suitable reference model, which
verifies formally (if cutoffs are neglected) proper gauge symmetries. Quite
surprisingly, the cancellations on Beta function of the Hubbard model,
which verifies an SU(2) spin symmetry, will be obtained by a reference
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model not SU(2) invariant. We derive suitable Ward and Correction Iden-
tities for the reference model, and by them the partial vanishing of the
Hubbard Beta function is proved. Hence the running coupling constants
are small if U is small enough and the rigorous construction of the cor-
relation functions for Hubbard model is completed. The analysis can be
easily generalized to include the presence of a magnetic field or non local
interactions.

Finally, we stress that the computation of the correlations in the cases
left out by the present work, that is in the half-filled band or in the attrac-
tive case, is a very complex and important open problem. In such cases the
running coupling constants tend to increase iterating the Renormalization
Group and convergence of the renormalized expansion is obtained only
up to exponentially small temperatures; this is probably related to the fact
that from the Bethe ansatz analysis the system is an insulating at half fill-
ing. Similar problems appear in d >1 Hubbard model; one can still define
by Renormalization Group methods an expansion for the correlations in
terms of the running coupling constants (indeed they are functions in d >
1), but they tend to increase iterating the Renormalization Group, as a
consequence of the various quantum instabilities (like superconductivity)
which are expected at low temperatures. Hence rigorous results for the
correlations in interacting Hubbard-like models in d>1 are at the moment
found only when instabilities are absent; this can be obtained or con-
sidering large enough temperatures, like in refs. 3, 9, or in presence of
large external magnetic fields making the Fermi surface asymmetric, like
in ref. 12.

1.3. The Hubbard Model

The Hubbard model Hamiltonian is given by

H = −t
∑

x∈�

∑

σ=±
(a+
x,σ a

−
x+1,σ +a+

x+1,σ a
−
x,σ )

+U
∑

x∈�
a+
x,+a

−
x,+a

+
x,−a

−
x,− −µ

∑

x∈�

∑

σ=±
a+
x,σ a

−
x,σ (1.1)

where � is an interval of L points on the one dimensional lattice of step
1, which will be chosen equal to (−[L/2], [(L− 1)]/2) and a±

x,σ is a set
of fermionic creation or annihilation operators with spin σ = ±satisfying
periodic boundary conditions; t = 1/2 is the hopping parameter, U > 0 is
the coupling and µ is the chemical potential. The Hamiltonian verifyes an
SU(2) spin symmetry.
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A generalization of the above hamiltonian including the effect of a
short-ranged (instead of a nearest-neighbor) interaction, and the presence
of a magnetic field, is the following

H = −1
2

∑

x∈�,σ
(a+
x,σ a

−
x+1,σ +a+

x+1,σ a
−
x,σ )+U

∑

x,y∈�
v(x−y)a+

x,+a
−
x,+a

+
y,−a

−
y,−

−µ
∑

x∈�,σ
a+
x,σ a

−
x,σ +h

∑

x∈�
(a+
x,+a

−
x,+ −a+

x,−a
−
x,−) (1.2)

When the interaction is given by Uv(x− y)=Uδx,y +V δx+1,y , the model
is known as the U–V model.

We consider the operators a±
x,σ = eHx0a±

x,σ e
−Hx0 , x = (x, x0) and x0

will be called time variable.
Many physical properties of the fermionic system at inverse temper-

ature β can be expressed in terms of the Schwinger functions, that is the
truncated expectations in the Grand Canonical Ensemble of the time order
product of the field a±

x,σ at different space-time points. If

〈X〉L,β = T re−βHX
T re−βH

(1.3)

the Schwinger functions are defined as, if ε=±

SL,β(x1, ε1, σ1; . . . ;xn, εn, σn)=〈aε1
x1,σ1 . . . a

ε1
xn,σn〉L,β (1.4)

We will denote by S(x1, . . . ) the limL,β→∞ of (1.4). An important role is
played by the two point Schwinger function

SL,β(x,+, σ ;y,−, σ )=SL,β(x,y) (1.5)

Denoting by ŜL,β(k, x0) the Fourier transform of SL,β(x) with respect to
the x variable, nk≡ ŜL,β(k,0−) is the occupation number, the average num-
ber of particles with momentum k. Another important physical quantity is
the density-density correlation function

�x,y =〈ρxρy〉−〈ρx〉〈ρy〉 (1.6)

where ρx =∑σ=± a+
x,σ a

−
x,σ .
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1.4. The Non Interacting U =0 Case

The two point Schwinger function in the non interacting case is given
by, in the limit L,β→∞

S0(x,y)=
∫ ∞

−∞
dk0

∫ π

−π
dk

e−ik(x−y)

−ik0 +µ− cos k
(1.7)

where k = (k, k0). It is easy to check that one can write, if µ= cosp0
F and

v0 = sinp0
F

S0(x,y)=
∑

ω=±

eiωp
0
F (x−y)

v0x0 + iωx + ḡ(x,y) (1.8)

with |ḡ(x,y)| � C

1+|x−y|1+θ , θ a positive constant; that is, the two point

Schwinger function decays as O(|x − y|−1) oscillating with period π

p0
F

.

Important physical properties are:

(1) The occupation number is given by nk =χ(|k|�p0
F ), that is it is

discontinuous.

(2) The bidimensional Fourier transform of the density correlation
function has singularities at (±2p0

F ,0) and (0,0); in (±2p0
F ,0) it has a

logarithmic singularity while in (0,0) the Fourier transform is bounded.

(3) The one dimensional Fourier transform at x0 = 0 of the density
correlation is continuous, while its first derivative in k has a first order dis-
continuity in k=0,±2p0

F .

1.5. Main Result

Our result can be informally stated in the following way

In the not half filled band case and in the weak coupling regime, the
(repulsive) Hubbard model (1.1) is a Luttinger liquid.

A more formal statement is the following theorem.

1.6.

Theorem 1. Consider the hamiltonian (1.1) with −1 < µ < 1 and
µ �= 0 (not filled or half filled band case); there exists an ε > 0 such that,
for 0�U � ε
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(a) the two point Schwinger function (1.5) is given by, in the limit
L,β→∞

S(x,y)=
∑

ω=±

eiωpF (x−y)

v(x0 −y0)+ iω(x−y)
1+Aω(x,y)

|x −y|η + S̄(x,y) (1.9)

with

η=aU2 +U2f0(U) pF = cos−1µ+f1(U) v=v0 +f2(U) (1.10)

where a>0, |f0(U)|, |f1(U)|, |f2(U)|�CU and

|∂̄n1
x ∂

n0
x0
Aω(x,y)|�CU 1

|x −y|n0+n1
|S̄(x,y)|� C

1+|x −y|1+θ (1.11)

for suitable positive constants C, θ , if ∂̄ denotes the discrete derivative.
Moreover the occupation number nk is continuous at k=±pF but its first
derivative diverges at k=±pF as |k− (±pF )|−1+η.

(b) The density-density correlation function (1.6) can be written as

�x,0 = cos(2pFx)�a(x)+�b(x)+�c(x) , (1.12)

with

�a(x) = 1+A1(x)
2π2[x2 + (vx0)

2]1+η1
,

�b(x) = 1
2π2[x2 + (vx0)

2]

{x2
0 − (x/v0)

2

x2 + (v0x0)
2

+A2(x)
}
, (1.13)

|Ai(x)|�CU |�c(x)|� C

1+|x|2+θ , (1.14)

for some constant C, where η1 =−bU +Uf4(U) with b>0 and |f4(U)|�
CU . Finally for α=1,2 and if Cn0,n1 is a constant

|∂̄n1
x ∂

n0
x0
Aα(x)|� Cn0,n1

1+|x|n0+n1
(1.15)
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(c) Let �̂(k), k= (k, k0)∈ [−π,π ]×R
1, the Fourier transform of �x,0.

Then near k = (0,0)

|�̂(k)|� c2[1+U log |k|−1] (1.16)

and, at k = (±2pF ,0), �̂(k) diverges as

|k − (±2pF ,0)|2η1/|η1| (1.17)

Let G(x) = �x,0|x0=0 and Ĝ(k) its Fourier transform. Then Ĝ(k) is
bounded and ∂kĜ(k) has a first order discontinuity at k= 0, with a jump
equal to 1+O(U), and, at k=±2pF , diverges as |k− (±2pF )|2η1 ; for k �=
0,±2pF ∂kG(k) is bounded.

Remarks.

(a) A naive estimate of ε in the above Theorem is ε =O(|µ|α) for
some constant α, for µ close to 0; that is U must be taken smaller and
smaller as we are closer and closer to the half filled band case.

(b) A first effect of the interaction is that the Fermi momentum pF
is modified by the interaction by O(U) terms.

(c) More dramatic is the effect of the interaction on the long dis-
tance asymptotic behavior of the physical observables; it turns out that the
two point Schwinger function decays faster in presence of the interaction,
while the correlation function decays slower. The large distance decay is
power law with anomalous critical indexes depending non trivially by the
coupling U .

(d) As a consequence the occupation number nk, which in the non
interacting case have a discontinuity at k= ±pF , has no discontinuity in
presence of the interaction; this proves that the d = 1 Hubbard model
is a Luttinger liquid in the sense of ref. 16. The lack of discontinuity in
the occupation number can be physically interpreted saying that fermionic
quasiparticles are not present.

The interaction changes the log-singularity at k= (±2pF ,0) of the
bidimensional Fourier transform of the density correlation in a power law
singularity, with a nonuniversal critical index O(U). This enhancement of
the singularity is considered a signal of the tendency of the system to
develop density wave excitations with period π/pF , generically incommen-
surate with the lattice. On the other hand the singularity in k = (0,0) is
much weaker, that is at most logarithmic.
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In the same way, the interaction leaves invariant the singularity
of the first derivative of the one dimensional Fourier transform of the
correlations in k = 0 (a first order discontinuity) while the singularity in
k= ±2pF is changed by the interaction from a discontinuity to a power
law singularity.

(e) The two points Schwinger function and the density correlation
can be written as sum of two terms; one which is very similar to cor-
responding quantities in the Luttinger model, and in which the depen-
dence from pF is quite simple (they can be written as oscillating terms
times terms which are free of oscillations, in the sense that each derivative
increases the decay by a unit, see (1.11), (1.15)) and another (non Luttin-
ger like) in which the dependence on pF and the lattice steps is very com-
plicate; this last term decays faster than the Luttinger like terms but the
derivatives do not increase the decay for the presence of oscillating terms.
The non Luttinger like terms have Fourier transform which is bounded;
however sufficiently high derivatives of the Fourier transform can be sin-
gular for values different from k= 0,±pF ,±2pF (such singularities were
indeed observed in numerical simulations, see ref. 21).

(f) Our results provide a proof of Luttinger liquid behavior, but
they are still not enough accurate to prove an important property called
spin-charge separation, which is believed true for the Hubbard model;
namely that the asymptotic behavior of the two point Schwinger function
is (x0 + ivcx)− 1

2 −ηc (x0 + ivsx)− 1
2 −ηs , with vc−vs=O(U) and ηc, ηs=O(U);

(1.9),(1.11) is compatible with such behavior but is not enough accurate to
prove it. Another property which could be probably proved by an exten-
sion of our techniques is the Borel summability of our critical indexes as
a function of U .

(g) Finally, we could consider a short range instead of local poten-
tial, that is (1.2) with h=0. In such a case the condition U >0 is replaced
by the condition Uv̂(2pF )+ F(U) > 0, where F(U) is a suitable O(U2)

function. Note that the linear term is vanishing for sufficiently long range
interactions such that v̂(2pF )=0.

1.7. The Hubbard Model in a Magnetic Field

Let us consider the Hamiltonian (1.2) with h �= 0; the presence of
a magnetic field destroys the spin rotation invariance. Moreover it turns
out that one can consider also attractive interactions, if the interaction
is smaller than the magnetic field. Calling Sσ,L,β(x,y) = 〈ψ−

x,σψ
+
y,σ 〉L,β

we prove the following result.
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1.8.

Theorem 2. Consider the hamiltonian (1.2) with −1 < µ < 1 and
0 � h � h0 for a suitable constant h0; assume also that cos−1(µ + h) +
cos−1(µ− h) �= π . There exists positive constants ε1, ε2 (depending on µ

and h, and ε2 vanishing as h→0) such that, if −ε2 �U �ε1 the two point
Schwinger function is given by, in the limit L,β→∞

Sσ (x,y)=
∑

ω

eiωp
σ
F (x−y)

v(x0 −y0)+ iω(x−y)
1+Aω(x,y)

|x −y|η + S̄(x,y) (1.18)

with

η=aU2 +O(U3) pσF = cos−1(µ+ sign (σ )h)+O(U)
v= sin(cos−1(µ+ sign (σ )h))+O(U) (1.19)

where a>0 and

|∂n0 ∂̄n1A(x,y)|�CU |x −y|−n0−n1 |S̄(x,y)|� C

1+|x −y|1+θ (1.20)

for suitable positive constants C, θ .

The other statements in the previous theorem can be repeated with
some obvious modifications. The above result says that the Hubbard
model is still a Luttinger liquid even in presence of a magnetic field; this
happens even in the attractive case, if the interaction is smaller than the
magnetic field.

1.9. Contents

In Sections 2 and 3 we write the Hubbard model (1.1) partition
function as a Grassmann integral, and we define a multiscale integration
procedure; we get an expansion in terms of running coupling constants,
whose regularity properties are stated in Theorem 3. In Section 4 we study
the flow of the running coupling constants and in Sections 5 and 6 we
derive the cancellations of the Hubbard model Beta function by Ward
identities and Correction identities of a suitable reference model. Finally,
such results are applied in Section 7 to the computation of the Schwinger
functions and the correlations and in Section 8 the presence of the mag-
netic field is included. We rely on many technical results already obtained
in refs. 4–7 (the presence of spin has a small effect on the proof of con-
vergence, for instance) and we focus mainly on the difference with respect
to the spinless case.
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2. THE ULTRAVIOLET INTEGRATION

We assume µ∈�∩ (−1,1), where �c={µ : |µ|, |µ±1|� µ̄}, where µ̄>
0 is a fixed constant. We call DL,β ≡DL×Dβ , with DL≡{k= 2πn/L,n∈
Z,−[L/2] �n� [(L− 1)/2]} and Dβ ≡{k0 = 2(n+ 1/2)π/β,n∈Z,−M�n�
M−1}; moreover we define

t̃=1− δ t̃ cospF =µ−ν (2.1)

with δ, ν suitable counterterms to be fixed properly in the following. We
introduce a finite set of Grassmanian variables {ψ̂±

k }, one for each k ∈
DL,β , and a linear functional P(dψ) on the generated Grassmannian alge-
bra, such that

∫
P(dψ)ψ̂−

k1,σ1
ψ̂+

k2,σ2
= Lβδk1,k2δσ1,σ2 ĝ(k1),

ĝ(k) = 1
−ik0+t̃ cospF−t̃ cos k

.
(2.2)

We will call ĝ(k) the propagator of the field.
We define also Grassmanian field ψ±

x is defined by

ψ±
x,σ = 1

Lβ

∑

k∈DL,β

ψ̂±
k,σ e

±ik·x (2.3)

such that

1
Lβ

∑

k∈DL,β

e−ik·(x−y) ĝ(k)=
∫
P(dψ)ψ−

x ψ
+
y ≡gL,β(x;y) , (2.4)

It is well known that the partition function Z=〈e−βH 〉L,β can be rewritten
as the limit M→∞ of the Grassmann integral

∫
P(dψ)e−V (2.5)

where P(dψ) is the Grassmann integration with propagator (2.4) and

V = U

∫ β/2

−β/2
dx0

∑

x∈�
ψ+

x,+ψ
−
x,+ψ

+
x,−ψ

−
x,−

+ν
∫ β/2

−β/2
dx0

∑

x∈�,σ
ψ+

x,σψ
−
x,σ + δ

∫ β/2

−β/2
dx0

∑

x,y∈�,σ
tx,yψ

+
x,σψ

−
x,σ

(2.6)
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where tx,y = 1
2δy,x+1 + 1

2δx,y+1. Let T 1 be the one dimensional torus,
‖k− k′‖T 1 the usual distance between k and k′ in T 1 and ‖k‖ = ‖k− 0‖.
We introduce a scaling parameter γ > 1 and a positive function χ(k′) ∈
C∞(T 1 ×R), k′ = (k′, k0), such that

χ(k′)=χ(−k′)=
{

1 if |k′|<t0 ≡a0v0/γ,

0 if |k′|>a0v0,
(2.7)

where

|k′|=
√
k2

0 + (v0‖k′‖T 1)2 , (2.8)

a0 =min{pF /2, (π −pF )/2} , (2.9)

The definition (2.7) is such that the supports of χ(k − pF , k0) and
χ(k+pF , k0) are disjoint and the C∞ function on T 1 ×R

f̂u.v.(k)≡1−χ(k−pF , k0)−χ(k+pF , k0) (2.10)

is equal to 0, if [v0‖(|k|−pF )‖T 1 ]2 +k2
0 <t

2
0 . We define

gL,β(x;y)=gu.v.(x,y)+gi.r.(x,y) (2.11)

with

gu.v.(x,y)= 1
Lβ

∑

k∈DL,β

e−ik(x−y) f̂u.v.(k)
−ik0 − t̃ cos k+ t̃ cospF

gi.r.(x,y)= 1
Lβ

∑

k∈DL,β

e−ik(x−y)
∏
ω=±1 χ(k−ωpF , k0)

−ik0 − t̃ cos k+ t̃ cospF
(2.12)

From the integration over ψ(u.v.) we get

e−LβEL,β = e−LβẼ1
∫
P(dψ(i.r.)) e−V(0)(ψ(i.r.)) , V(0)(0)=0 , (2.13)

e−V(0)(ψ(i.r.))−LβẼ1 = ∫ P(dψ(u.v.))e−V(ψ(i.r.)+ψ(u.v)) . (2.14)
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We will call ψ(i.r.)=ψ(�0); V(0)(ψ(�0)) can be written in the form

V(0)(ψ(�0)) =
∞∑

n=1

1
(Lβ)2n

∑

σ

∑

k1,... ,k2n

2n∏

i=1

ψ̂
(�0)εi
ki ,σi

×Ŵ (0)
2n,σ ,ω(k1, . . . ,k2n−1) δ

(
2n∑

i=1

εiki

)
, (2.15)

where σ = (σ1, . . . , σ2n), ω= (ω1, . . . , ω2n) and we used the notation

δ(k)= δ(k)δ(k0) , δ(k)=L
∑

n∈Z

δk,2πn , δ(k0)=βδk0,0. (2.16)

We prove in the Appendix that

|Ŵ (0)
2n,σ ,ω(k1, . . . ,k2n−1)|�LβCmax(U, |ν|)max(1,n/2) (2.17)

The SU(2) spin invariance implies that the quartic terms have the follow-
ing form

1
(Lβ)4

∑

k1,..,k4

W
(0)
4,ω(k1, . . . ,k4)

∑

σ

δ

(
∑

i

εiki

)

×[ψ+
k1,σ

ψ−
k2,σ

ψ+
k3,σ

ψ−
k4,σ

+ψ+
k1,σ

ψ−
k2,σ

ψ+
k3,−σψ

−
k4,−σ ] (2.18)

where W(0)
4,ω is spin independent.

3. THE INFRARED INTEGRATION

3.1. Quasiparticles

We define also, for any integer h�0,

fh(k′)=χ(γ−hk′)−χ(γ−h+1k′); (3.1)



388 Mastropietro

we have, for any h̄<0,

χ(k′)=
0∑

h=h̄+1

fh(k′)+χ(γ−h̄k′) . (3.2)

Note that, if h�0, fh(k′)=0 for |k′|<t0γ h−1 or |k′|>t0γ h+1, and fh(k′)=
1, if |k′|= t0γ h. We finally define, for any h�0:

f̂h(k)=fh(k−pF , k0)+fh(k+pF , k0); (3.3)

This definition implies that, if h� 0, the support of f̂h(k) is the union
of two disjoint sets, A+

h and A−
h . In A+

h , k is strictly positive and ‖k −
pF ‖T 1 � a0γ

h � a0, while, in A−
h , k is strictly negative and ‖k+ pF ‖T 1 �

a0γ
h. The label h is called the scale or frequency label. Note that, if

k ∈ DL,β , then |k ± (pF ,0)| �
√
(πβ−1)2 + (v0πL

−1)2, by the definition of
DL,β . Therefore

f̂h(k)=0 ∀h<hL,β =min{h: t0γ
h+1>

√
(πβ−1)2 + (v0πL

−1)2} , (3.4)

and, if k∈DL,β , the definitions (2.10) and (3.3), together with the identity
(3.2), imply that

1=
0∑

h=hL,β
f̂h(k)+ f̂u.v.(k) . (3.5)

We now introduce, for any h�0, a set of Grassmann variables ψ±
k′,ω such

that
∫
P(dψ(h))ψ

−(h)
k′

1,ω,σ
ψ

+(h)
k′

2,ω
′,σ ′ =Lβδσ,σ ′δω,ω′δk′

1,k
′
2
g(h)ω (k′

1) . (3.6)

where

g(h)ω (k′)= fh(k
′, k0)

−ik0 − t̃ cos(k′ +ωpF )+ t̃ cospF
(3.7)

We introduce also the Grassmann variables

ψ±(h)
x,ω,σ = 1

Lβ

∑

k′∈DL,β

ψ̂
±(h)
k′,ω,σ e

±ik′·x (3.8)
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so that

∫
P(dψ(h))ψ−(h)

x,ω,σψ
+(h)
y,ω′,σ ′ = δσ,σ ′δω,ω′g(h)ω (x,y). (3.9)

where

g(h)ω (x,y)= 1
Lβ

∑

k′∈DL,β

e−ik
′(x−y)g(h)ω (k′). (3.10)

It holds that

∫
P(dψ(i.r.))ψ−(i.r.)

x,σ ψ
+(i.r.)
y,σ ′ = δσ,σ ′

0∑

h=hL,β

∑

ω=±
e−iωpF (x−y)g(h)ω (x,y).

(3.11)

The above identity implies that, if F(ψ(i.r.)) is any analytic function of the
variables ψ(i.r)

∫
P(dψ(i.r.))F (ψ(i.r.))=

∫ 0∏

h=hL,β
P (dψ(h))F




0∑

h=hL,β

∑

ω=±
e−iωpF xψ(h)x,σ





(3.12)

We define also

C−1
h (k)=

h∑

k=−∞
f̂k(k) (3.13)

3.2. Multiscale Integration

The integration of the infrared part is done in an iterative way.
Assume that we have integrated the scales 0,−1, . . . , h+ 1 and that we
have found

∫
PZh,Ch(dψ

(�h))e−V(h)(
√
Zhψ

(�h))−LβEh , V(h)(0)=0 , (3.14)
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where

PZh,Ch(dψ
(�h))=N −1

h

∏

k′∈D

∏

ω=±1

dψ
+(�h)
k′,ω dψ

−(�h)
k′,ω

exp− 1
βL

∑

k′∈D
C

−1
h

(k)>0

ZhCh(k)ψ
+(�h)
k′,ω,σ (3.15)

×(−ik0 +ωv0 sin k′ + cospF (cos k′ −1))ψ−(�h)
k′,ω,σ

and

V(h)(ψ(�h)) =
∞∑

n=1

1
(Lβ)2n

∑

σ

∑

k′
1,... ,k

′
2n

2n∏

i=1

ψ̂
(�0)εi
k′
i ,ωi ,σi

×Ŵ (h)

2n,σ ,ω(k
′
1, . . . ,k

′
2n−1) δ

(
2n∑

i=1

εik′
i +

2n∑

i=1

εiωipF

)
,

(3.16)

and in particular the quartic terms have the following form

1
(Lβ)4

∑

k′
1,..,k

′
4

∑

ω

W
(h)

4,ω(k
′
1, . . . ,k

′
3)
∑

σ

δ

(
∑

i

εik′
i +
∑

i

εiωipF

)

[ψ+
k1,ω1,σ

ψ−
k2,ω2,σ

ψ+
k3,ω3,σ

ψ−
k4,ω4,σ

+ψ+
k1,ω1,σ

ψ−
k2,ω2,σ

ψ+
k3,ω3,−σψ

−
k4,ω4,−σ ]

(3.17)

Note that there exists a scale h̄ such that, for h� h̄ are present in (3.17)
only the monomials verifying

4∑

i=1

εiωipF =0 . (3.18)

In fact by the compact support properties of the propagators∥∥∑
i εik

′
i

∥∥
T 1 � 4a0v0γ

h+1 and if (3.18) is not satisfied
∥∥∑4

i=1 εiωipF
∥∥
T 1 �

C|pF − π
2 | as the condition |µ|� µ̄ surely implies that |pF − π

2 |>0, for U
small enough (than O(µ̄)); hence h̄=O(log |pF − π

2 |).
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3.3. The Localization Operator

We split the effective potential V(h) as LV(h)+RV(h), where R= 1 −
L and L, the localization operator, is a linear operator on functions of
the form (3.16), defined in the following way by its action on the kernels
Ŵ
(h)

2n,ω.

(1) If 2n=4 we define

LŴ (h)

4,σ ,ω(k
′
1,k

′
2,k

′
3)=L−1δ

(
∑

i=1

εiωipF

)
Ŵ
(h)

4,σ ,ω(k̄++, k̄++, k̄++) ,

(3.19)

where k̄ηη′ = (ηπL−1, η′πβ−1).
(2) If 2n=2 (in this case there is a non zero contribution only if ω1 =

ω2)

LŴ (h)

2,σ ,ω(k
′)= 1

4

∑

η,η′=±1

Ŵ
(j)

2,σ ,ω(k̄ηη′)

{
1+ηL

π
+η′ β

π
k0

}
, (3.20)

(3) In all the other cases

LŴ (h)

2n,σ ,ω(k
′
1, . . . ,k

′
2n−1)=0 . (3.21)

In the not half filled band case pF �= π
2 the condition δ(

∑
i=1 εiωipF ) �=

0 is equivalent to the condition
∑4
i=1 εiωi �= 0. Then the action of L if

n= 2 is non trivial only if
∑4
i=1 εiωi = 0 and there are only the following

possibilities for ω1,ω2,ω3,ω4:

(ω,ω,−ω,−ω); (ω,−ω,−ω,ω); (ω,ω,ω,ω) (3.22)

In the half filled band case pF = π
2 the action of L is non trivial also if

ω1 =ω3 =−ω2 =−ω4.
We get, in the not half filled band case

LV(h)(ψ) = γ hnhF
(h)
ν (ψ)+ zhF (h)z (ψ)+ahF (h)a (ψ)+γ1,hF

(h)

1 (ψ)

+γ2,hF
(h)

2 (ψ)+γ4,hF
(h)

4 (ψ) (3.23)
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where

Fν = 1
βL

∑

k′

∑

ω,σ

ψ+
k′,ω,σψ

−
k′,ω,σ

Fz= 1
βL

∑

k′
(−ik0)

∑

ω,σ

ψ+
k′,ω,σψ

−
k′,ω,σ

Fa = 1
βL

∑

k′
[ω sinpF sin k′ + cospF (cos k′ −1)]

∑

ω,σ

ψ+
k′,ω,σψ

−
k′,ω,σ

F1 = 1
(βL)4

∑

k′
1,k

′
2,k

′
3,k

′
4

∑

ω

∑

σ,σ ′
δ

(
∑

i

εik′
i

)
ψ+

k′
1,ω,σ

ψ−
k′

2,−ω,σ
ψ+

k′
3,−ω,σ ′ψ

−
k′

4,ω,σ
′

F2 = 1
(βL)4

∑

k′
1,k

′
2,k

′
3,k

′
4

∑

ω,σ,σ ′
δ

(
∑

i

εik′
i

)
ψ+

k′
1,ω,σ

ψ−
k′

2,ω,σ
ψ+

k′
3,−ω,σ ′ψ

−
k′

4,−ω,σ ′

F4 = 1
(βL)4

∑

k′
1,k

′
2,k

′
3,k

′
4

∑

ω,σ

δ

(
∑

i

εik′
i

)
ψ+

k′
1,ω,σ

ψ−
k′

2,ω,σ
ψ+

k′
3,ω,σ

′ψ
−
k′

4,ω,σ
′

Note that

γ2,h = Ŵ (h)(ωpF ,ωpF ,−ωpF ,−ωpF )
γ1,h = Ŵ (h)(ωpF ,−ωpF ,−ωpF ,ωpF ) (3.24)

γ4,h = Ŵ (h)(ωpF ,ωpF ,ωpF ,ωpF )

and in particular

γ4,0 =Uv̂(0)+O(U2) γ2,0 =Uv̂(0)+O(U2) γ1,0 =Uv̂(2pF )+O(U2)

In the case of local interactions v(p)=1. Note also that the spin symmet-
ric part of γ4,h is vanishing by Pauli principle.

3.4. Renormalization

We write (3.14) as

∫
PZh,Ch(dψ

(�h)) e−LV(h)(
√
Zhψ

(�h))−RV(h)(
√
Zhψ

(�h))−LβEh, (3.25)
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and we include the quadratic part of LV(h) given by zh
∫
dk′∑

ω,σ ψ
+
k′,ω,σ

(−ik0 +ω sin k′ + cospF (cos k′ −1))ψ−
k′,ω,σ in the free integration; we call

LV̄h = LV(h)− zh
∫
dk′∑

ω,σ

ψ+
k′,ω,σ

×(−ik0 +ω sin k′ + cospF (cos k′ −1))ψ−
k′,ω,σ (3.26)

so that we obtain

∫
P
Z̃h−1,Ch

(dψ(�h)) e−LV̄h(
√
Zhψ

(�h))−RV(h)(
√
Zhψ

(�h))−LβEh , (3.27)

where

Z̃h−1(k)
def=Zh(1+ zhC−1

h (k)) (3.28)

It is convenient to rescale the fields:

V̂(h)(
√
Zh−1ψ

(�h)) def= g1,hF1(
√
Zh−1ψ

(�h))+g2,hF2(
√
Zh−1ψ

(�h))
+g4,hF1(

√
Zh−1ψ

(�h))+ δhFa(
√
Zh−1ψ

(�h))

+γ hνhFν(
√
Zh−1ψ

(�h))+RV(h)(
√
Zhψ

(�h)),
(3.29)

where

νh= Zh

Zh−1
nh δh= Zh

Zh−1
[ah− zh] gi,h=

[
Zh

Zh−1

]2

γi,h (3.30)

Finally the r.h.s. of (3.27) can be rewritten as

e−Lβth
∫
PZh−1,Ch−1(dψ

(�h−1))

∫
P
Zh−1,f̃

−1
h
(dψ(h)) e−V̂(h)(

√
Zh−1ψ

(�h)) ,

(3.31)

where

Zh−1 =Zh(1+ zh) f̃h(k′)=fh(k′)
[

1+ zhfh+1(k′)
1+ zhfh(k′)

]
(3.32)
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and
∫
P
Zh−1,f̃

−1
h
(dψ(h))ψ−(h)

x,ω1,σ1
ψ+(h)

y,ω2,σ2
= δσ1,σ2δω1,ω2

g̃
(h)
ω (x,y)
Zh−1

= 1
Zh−1

1
Lβ

∑

k′∈DL,β

f̃h(k)
e−ik′(x−y)

−ik0 +ωv0 sin k′ + cospF (cos k′ −1)
. (3.33)

We then integrate ψ(h)

∫
P
Zh−1,f̃

−1
h
(dψ(�h)) e−V̂(h)(

√
Zh−1ψ

(�h))= e−V(h−1)(
√
Zh−1ψ

(�h)) (3.34)

and the procedure can be iterated.
Note that the quartic terms in LVh can be written in coordinate rep-

resentation in the following way

∑

ω,σ

∫
dxgh2 [ψ+

x,ω,σψ
−
x,ω,σψ

+
x,−ω,σψ

−
x,−ω,σ +ψ+

x,ω,σψ
−
x,ω,σψ

+
x,−ω,−σψ

−
x,−ω,−σ ]

+gh1 [ψ+
x,ω,σψ

−
x,−ω,σψ

+
x,−ω,σψ

−
x,ω,σ +ψ+

x,ω,σψ
−
x,−ω,σψ

+
x,−ω,−σψ

−
x,ω,−σ ]

+gh4 [ψ+
x,ω,σψ

−
x2,ω,σ

ψ+
x,ω,−σψ

−
x,ω,−σ ] (3.35)

where
∫
dx = ∫ dx0

∑
x . Finally note that the propagator is written as

g̃(h)ω (x −y)=g(h)ω,L(x −y)+ r(h)ω (x −y) (3.36)

where

g
(h)
ω,L(x −y)= 1

βL

∑

k

fh(k)
e−ik(x−y)

−ik0 +ωk

and for any positive integer N

|r(h)ω (x −y)|�CN γ 2h

1+ (γ h|x −y|)N

It is easy to verify that g(h)ω,L verifies the same bound of r(h)ω with a γ h less.
We call vk= (νk, δk, g1,k, g2,k, g4,k), k�0 and v1 = (ν, δ,U); moreover we call
gk= (g1,k, g2,kg4,h) and µk= (g2,k, g4,k), k�0. The above integration proce-
dure generates a power series expansion for W(h)

2n,σ ,ω(x1, . . . ,x2n) in (3.16) in
terms of the running coupling constants 
vk, k= 1,0,−1,−2, . . . , h, which
is indeed convergent if they are small enough. More exactly it holds the
following result.
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3.5.

The following crucial result holds.

Theorem 3. Assume that µ �= 0,±1 and supk�h |
vk| � εh; assume

also that, for some constant c, supk�h
Zk
Zk−1

� ecε2
h ; then there exists ε̄ such

that, for εh � ε̄ the functions W(h)

2n,σ ,ω(x1, . . . ,xn) are analytic in the run-
ning coupling constants (
vk)k�h and, for a suitable constant C,α

∫
dx1 . . . dxn|W(h)

2n,σ ,ω(x1, . . . ,xn)|� (Cεhh̄α)max(1,n/2)Lβγ (2−n)h (3.37)

Sketch of the proof. The proof is essentially identical to the one of
Theorem (3.12) of ref. 4 about the spinless case. The only important differ-
ence is that there exists a finite scale h̄=O(log |pF − π

2 |) such that for
h� h̄ there are no contributions to the effective potential V̄h (3.16) with
n=2 and a choice of ω, ε such that (3.18) is not verified. We can write the
effective potential V(h)(

√
Zhψ

(�h)), for h�0, in terms of a tree expansion,
similar to that described in ref. 4.

We need some definitions and notations.

(1) Let us consider the family of all trees which can be constructed
by joining a point r, the root, with an ordered set of n�1 points, the end-
points of the unlabeled tree (see Fig. 1), so that r is not a branching point.

Fig. 1. A tree τ and its labels.
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n will be called the order of the unlabeled tree and the branching points
will be called the non trivial vertices. The unlabeled trees are partially
ordered from the root to the endpoints in the natural way; we shall use
the symbol < to denote the partial order.

Two unlabeled trees are identified if they can be superposed by
a suitable continuous deformation, so that the endpoints with the same
index coincide. It is then easy to see that the number of unlabeled trees
with n end-points is bounded by 4n.

We shall consider also the labeled trees (to be called simply trees
in the following); they are defined by associating some labels with the
unlabeled trees, as explained in the following items.

(2) We associate a label h� 0 with the root and we denote Th,n the
corresponding set of labeled trees with n endpoints. Moreover, we intro-
duce a family of vertical lines, labeled by an an integer taking values in
[h,2], and we represent any tree τ ∈Th,n so that, if v is an endpoint or a
non trivial vertex, it is contained in a vertical line with index hv >h, to be
called the scale of v, while the root is on the line with index h. There is
the constraint that, if v is an endpoint, hv >h+1.

The tree will intersect in general the vertical lines in set of points
different from the root, the endpoints and the non trivial vertices; these
points will be called trivial vertices. The set of the vertices of τ will be
the union of the endpoints, the trivial vertices and the non trivial verti-
ces. Note that, if v1 and v2 are two vertices and v1 <v2, then hv1 <hv2 .
Given a vertex v, which is not an endpoint, xv will denote the family of all
space-time points associated with one of the endpoints following v. More-
over, there is only one vertex immediately following the root, which will be
denoted v0 and can not be an endpoint; its scale is h+1. Finally, if there
is only one endpoint, its scale must be equal to +2 or h+2.

(3) With each endpoint v of scale hv = +2, we associate one of the
three contributions to V(ψ(�1)), written as in (2.6) and a set xv of space-
time points, the corresponding integration variables. With each endpoint v
of scale hv �1 we associate one of local terms in LV(hv−1) (3.29); we will
say that the endpoint is of type g1, g2 and so on depending on the term
we associate to it.

Moreover, we impose the constraint that, if v is an endpoint and
xv is a single space-time point (that is the corresponding term is local),
hv =hv′ +1, if v′ is the non trivial vertex immediately preceding v.

(4) If v is not an endpoint, the cluster Lv with frequency hv is the
set of endpoints following the vertex v; if v is an endpoint, it is itself a
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(trivial) cluster. The tree provides an organization of endpoints into a hier-
archy of clusters.

(5) We introduce a field label f to distinguish the field variables
appearing in the terms associated with the endpoints as in item (3);
the set of field labels associated with the endpoint v will be called Iv.
Analogously, if v is not an endpoint, we shall call Iv the set of field labels
associated with the endpoints following the vertex v; x(f ), σ(f ) and ω(f )
will denote the space-time point, the σ index and the ω index, respectively,
of the field variable with label f .

If h�0, the effective potential can be written in the following way, see
ref. 4:

V(h)(
√
Zhψ

(�h))+LβẼh+1 =
∞∑

n=1

∑

τ∈Th,n

V (h)(τ,
√
Zhψ

(�h)), (3.38)

where, if v0 is the first vertex of τ and τ1, . . . , τs (s= sv0 ) are the subtrees
of τ with root v0,

V (h)(τ,
√
Zhψ

(�h)) is defined inductively by the relation

V (h)(τ,
√
Zhψ

(�h)) = (−1)s+1

s!
ETh+1[V̄ (h+1)

×(τ1,
√
Zhψ

(�h+1)); ..; V̄ (h+1)(τs,
√
Zhψ

(�h+1))],

(3.39)

and V̄ (h+1)(τi,
√
Zhψ

(�h+1))

(a) is equal to RV̂(h+1)(τi,
√
Zhψ

(�h+1)) if the subtree τi is not trivial;

(b) if τi is trivial and h � −1, it is equal to one of the terms
in LV(h+1) (3.29) or, if h = 0, to one of the terms contributing to
V̂(ψ<1) (2.6).

It is then easy to get, by iteration of the previous procedure, a simple
expression for V (h)(τ,

√
Zhψ

(�h)), for any τ ∈Th,n.
We associate with any vertex v of the tree a subset Pv of Iv, the exter-

nal fields of v. These subsets must satisfy various constraints. First of all,
if v is not an endpoint and v1, . . . , vsv are the vertices immediately follow-
ing it, then Pv ⊂∪iPvi ; if v is an endpoint, Pv = Iv. We shall denote Qvi

the intersection of Pv and Pvi ; this definition implies that Pv=∪iQvi . The
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subsets Pvi\Qvi , whose union will be made, by definition, of the internal
fields of v, have to be non empty, if sv >1.

Given τ ∈Th,n, there are many possible choices of the subsets Pv, v∈
τ , compatible with all the constraints; we shall denote Pτ the family of all
these choices and P the elements of Pτ . Then we can write

V (h)(τ,
√
Zhψ

(�h))=
∑

P∈Pτ

V (h)(τ,P) ; (3.40)

Calling W
(h)
τ,P the kernels of V (h)(τ,P) (see (3.16)) and repeating the

analysis in Section 3 of ref. 4 one gets the following bound (analogous to
(3.105) of ref. 4)

∫
dxv0 |W(h)

τ,P(xv0)|�CnLβεnhγ−hDk(Pv0 )

×
∏

v not e.p.

χ(Pv)

{
1
sv!
C
∑sv
i=1 |Pvi |−|Pv | (Zhv/Zhv−1

)|Pv |/2 γ−[−2+ |Pv |
2 +z(Pv)]

}
,

(3.41)

where z(Pv) = 2 if |Pv| = 2 and z(Pv) = 1 if |Pv| = 1 and∥∥∥
∑
f∈Pv ε(f )ω(f )pF

∥∥∥
T 1

=0; moreover χ(Pv) are defined so that χ(Pv)=0

if |Pv|= 4 , hv � h̄ and
∥∥∥
∑
f∈Pv ε(f )ω(f )pF

∥∥∥
T 1

�= 0, and χ(Pv)= 1 other-
wise.

We call 2 − |Pv |
2 − z(Pv) the dimension of the vertex v in the tree. If

no renormalization is defined R = 1 then one gets a similar bound with
zv(Pv) = 0. Hence if R = 1 the vertices v with |Pv| = 4 have vanishing
dimension (marginal terms) while if |Pv|= 2 they have positive dimension
(relevant terms). The presence of the χ -functions in (3.41) is easily under-
stood by noting that one can insert freely such χ functions in momen-
tum space, then one passes to coordinate space and make bounds using
the Gram-Hadamard inequality as in ref. 4.

For any v such that hv � h̄ it holds −2 + |Pv |
2 + z(Pv)� 1, that is the

dimension is negative, while if hv � h̄ it holds −2+ |Pv |
2 + z(Pv)�0.

We have to perform the sums over τ and P. The number of unlabeled
trees is �4n; fixed an unlabeled tree, the number of terms in the sum over
the various labels of the tree is bounded by Cn, except the sums over the
scale labels and the sets P.
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In order to bound the sums over the scale labels and P we first use
the inequality, for a constant 0<c<1

∏

v not e.p.

(
Zhv/Zhv−1

)|Pv |/2
γ−[−2+ |Pv |

2 +z(Pv)]

�
[
∏

ṽ

(χ(hṽ � h̄)γ−c(hṽ−hṽ′ )+χ(hṽ � h̄))
]


∏

v not e.p.

χ(|Pv|>4)γ− |Pv |
40



 ,

(3.42)

where ṽ are the non trivial vertices, and ṽ′ is the non trivial vertex imme-
diately preceding ṽ or the root. Then it holds that, noting the number of
nontrivial vertices is bounded by n

∑

{hṽ}

[
∏

ṽ

(
χ(hṽ � h̄)γ−c(hṽ−hṽ′ )+χ(hṽ � h̄)

)]
�Cn|h̄|αn (3.43)

for some numerical constant α. Finally the sum over P can be done as
described in ref. 4.

Remark. By (3.42) we get also that the bound for a tree τ ∈Th,n with
at least a vertex at scale k improves by a factor γ θ(h−k); this property is
called short memory property.

4. THE FLOW EQUATION

4.1. Second Order Analysis

By the iterative integration procedure seen in the previous section
it follows that the running coupling constants verify a recursive relation
whose r.h.s. is called Beta function:

Zh−1

Zh
= 1+ zh(vh, . . . , v1) (4.1)

νh−1 = γ νh+β(h)ν (vh, . . . , v1) (4.2)

δh−1 = δh+β(h)δ (vh, . . . , v1) (4.3)

gi,h−1 = gi,h+β(h)g,i (vh, . . . , v1) (4.4)
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with i= (1,2,3). The above equations are also called flow equations. The
functions zh, β

(h)
ν , β

(h)
δ β

(h)
g,i are expressed by the tree expansion seen in Sec-

tion 3 (for details, see ref. 4). The contribution to β
(h)

g,1 from the trees
with two end-points associated to the quartic running coupling constants
is given by, if

∫
dr = ∫ β/2−β/2 dr0

∑
r∈�

∑

k�h
4
∫
drg(k)ω (r)g(h)−ω(−r)g1,kg1,k =4

∫
dr

∑

k=h,h+1

g(k)ω (r)g(h)−ω(−r)g1,hg1,k

(4.5)

Using that g1,h − g1,h+1 =O(v2
h) and (3.36), and computing the equation

analogue to (4.5) for g2,h−1 and g4,h−1 we get that gi,h verify the follow-
ing equations

g1,h−1 = g1,h−ag2
1,h+O(v̄2

hγ
θh)+O(v̄3

h)

g2,h−1 = g2,h− a
2g

2
1,h+O(v̄2

hγ
θh)+O(v̄3

h)

g4,h−1 = g4,h+O(v̄2
hγ

θh)+O(v̄3
h)

(4.6)

with a a positive constant, given by

a=a1 +a2 =4
∫
dr[g(h)L,ω(r)g

(h)
L,−ω(r)+g(h)L,ω(r)g(h+1)

L,−ω (r)] (4.7)

If we neglect the cubic contributions O(v̄3
h) it is easy to see that the flow is

bounded (in sense that the quartic running coupling remain smaller than
O(U) for any h) if U > 0; in the general case in which the interaction is
non local the conditions is g1,0 = Uv(2pF )+O(U2) > 0. By taking into
account all higher order terms could destroy such behavior; aim of the
following sections is to prove that also taking into account the full Beta
function the quartic running coupling remain smaller than O(U).

4.2. Beta Function Decomposition

We have two free parameters at our disposal, ν and δ; we will show
that we can fix them so that νh =O(U2γ τh) and δh =O(U2γ τh). We fix
then our attention on the flow equation for g1,h, g2,h, g4,h.
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More explicitly (4.4) can be written as

g1,h−1 = g1,h−g1,h[a1g1,h+a2g1,h+1]

+G1
h(gh, . . . , g0)+

∑

k,k′
g1,kg1,k′H

1
h,k,k′(vh, . . . , v0)+R1

h(vh, . . . , v1)

g2,h−1 = g2,h− 1
2
g1,h[a1g1,h+a2g1,h+1]+β2

h(µh, . . . ,µ0)+G2
h(gh, . . . , g0)

+
∑

k,k′
g1,kg1,k′H

2
h,k,k′(vh, . . . , v0)+R2

h(vh, . . . , v1) (4.8)

g4,h−1 = g2,h+β4
h(µh, . . . ,µ0)+G4

h(gh, . . . , g0)

+
∑

k,k′
g1,kg1,k′H

4
h,k,k′(vh, . . . , v0)+R4

h(vh, . . . , v1)

where the following definitions are used:

(1) We write in (4.1) zk=z1
k+z2

k , where z1
k is defined iteratively as the

sum of all trees with only end-points at scale � 0 and with propagators
g
(k)
L,ω, see (3.36), and in which

Zk′−1
Zk′

, k′ �k is replaced by 1+ z1
k′ .

(2) The functions β2
h, β

4
h,G

2
h,G

4
h,G

1
h, g1g1H

i , with i = 1,2,4 are the
sum of all the trees with only end-points at scale � 0 and with propaga-
tors g(k)L , see (3.36), and in which the factors Zk−1

Zk
, k�h are replaced by

1+ z1
k .

(3) The terms contributing to β2
h, β

4
h are by definition independent

from g1,k,k�h.

(4) The terms contributing to G1
h,G

2
h,G

4
h by definitions depend lin-

early from g1,k, that is they are vanishing if g1,k = 0 for any k and their
second derivatives respect to g1,k are also vanishing, while the first deriv-
ative are not vanishing.

(5) The terms at least quadratic in g1 are included in
∑
k,k′ g1,kg1,k′H

i
h,k,k′

and by the short memory property

|Hi
h,k,k′ |�Cv̄hγ θ(h−k)γ θ(h−k

′) (4.9)

(6) In R(i)h we include; terms depending from νh or δh; terms with at
least a propagator rh1 (x−y), see (3.36); or terms with at least an endpoint
at scale 1.
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Note that the above decomposition is obtained by an analogous decom-
position over trees, so that the determinant bounds of Section 3 are still
valid.

In writing (4.8) we have used that the beta function contributing to
g1 has at least a g1; in fact consider a contribution to the antiparallel
part of g1; it is not invariant under the transformation ψ±

1,σ → e±σψ±
1,σ

and ψ±
−1,σ → ψ±

−1,σ while the terms corresponding to g2 and g4 are
invariant.

The flow given by (4.8) is very difficult to study; luckily dramatic
cancellations appear, given by, if ḡh= maxk�h(|g1

k |+ |g2
k |+ |g4

k |) and µ̄h=
maxk�h(|g2

k |+ |g4
k |), the following result.

Theorem 4. (Partial vanishing of the Beta function).
The functions β2

h, β
4
h,G

2
h,G

4
h,G

1
h, for |vh| � ε are such that, for a

suitable constants C, θ

|β2
h(µh, . . . ,µh) | �Cµ̄2

hγ
θh |β4

h(µh, . . . ,µh)|�Cµ̄2
hγ

θh (4.10)

|G2
h(gh, . . . , gh) | �Cḡ2

hγ
θh |G4

h(gh, . . . , gh)|�Cḡ2
hγ

θh (4.11)

| G1
h(gh, . . . , gh)|�Cḡ2

hγ
θh (4.12)

The above lemma says that a dramatic cancellation happens in the
series for the above functions; each order is sum of many terms O(1), but
at the end the final sum is O(γ θh), that is asymptotically vanishing. We
call such property partial vanishing of the Beta function (partial because
the O(g2

1) terms are not vanishing).
By the above lemma, which will proved in the following two sections

as consequence of suitable Ward identities, we can prove that the flow is
bounded for any g1,0> 0. Note that in ref. 8 a proof of (1.10) using the
exact solution of the Mattis model was sketched; (4.11) and (4.12) were
assumed without proof.

We proceed in the following way. We first assign a sequence νdef={νh}h�1,

δ
def={δh}h�1 not necessarily solving the flow equation for ν, δ, but such that

|νh|, |δh|� cUγ θh, for any h� 1. We then solve the flow equation for gi,h,
parametrically in ν, δ, and show that, for any sequence ν, δ with the supposed
property, the solution g(ν, δ)={g1,h(ν, δ), g2,h(ν, δ), g4,h(ν, δ)}h�1 exists and
has good decaying properties. We finally fix the sequence ν via a convergent
iterative procedure.
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Lemma 1. Assume that |νh|, |δh|� cUγ θh for any h. For U >0 and
small enough the flow is given by, for any h

|g2,h−g2,0 −g1,0/2|�U3/2 |g4,h−g4,0|�U3/2 0<g1,h� g1,0

1−a/3g1,0h

(4.13)

Proof. By using that |νh|, |δh|� cUγ θh it holds that

|Rih|�CU2γ θh (4.14)

It is convenient to introduce g̃2,h = 2g2,h − g1,h; then using (4.10) and
(4.14)

g̃2,h−1 = g̃2,h+
∑

k�h
Dh,k +

∑

k�h
(2D2

h,k −D1
h,k)+

∑

k,k′
g1,kg1,k′H̄h,k,k′ + R̄h

(4.15)

with

Dh,k = β2
h(µh, . . . ,µh,µk,µk+1, . . . ,µ0)−β2

h(µh, . . . ,µh,µh,µk+1, . . . ,µ0) (4.16)

Di
h,k =Gih(gh, . . . , gh, g′

k, gk′+1, . . . , g0)−Gih(gh, . . . , gh, gh, gk′+1, . . . , g0) i=1,2

and a similar equation for g4,h; H̄h,k,k′ verifies (4.9), R̄h (4.14) and

|Dh,k|�Cγ−2θ(k−h)U |gh−gk| |Dih,k|�CUγ−2θ(k−h)|gh−gk|
(4.17)

Assume that for k>h

0�g1,k−1 � g1,0

1−a/3g1,0(k−1)
|gk−1 −gk|�

[
U

5
4 γ θk +

[
g1,0

1−a/3g1,0k

]2
]

(4.18)

We have then to prove that such inequalities hold for k = h− 1. Noting
that

−1∑

k=h
γ θ(h−k)

1
−k = 1

−h
−1∑

k=h
γ θ(h−k)+

−1∑

k=h
γ θ(h−k)

(k−h)
kh

� C1

−h (4.19)
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we obtain

∑

k,k′
g1,kg1,k′H̄

2
h,k,k′ �CUg2

1,h (4.20)

Moreover

∑

k�h
|Dh,k| �

h∑

k=−1

CC1Uγ
−2θ(k−h)

k∑

k′=h

∣∣∣∣∣U
5
4 γ θk

′ +
[

g1,0

1−a/3g1,0k
′

]2
∣∣∣∣∣

� C2CU



U
5
4 γ θh+

h∑

k=−1

|k−h|γ 2θ(h−k)
[

g1,0

1−a/3g1,0k

]2




(4.21)

and the last addend can be bounded by

h∑

k=−1

γ θ(h−k)
1
k2

�C2

[
1

1−a/3g1,0h

]2

. (4.22)

Then by (4.15) we get

|g̃2,h−1 − g̃2,h|�C3

(
U2γ θh+U

(
g1,0

1− a
3g1,0h

)2
)

(4.23)

and

|g̃2,h−1 − g̃2,0|�C3

0∑

k=h

(
U2γ θk +U

[
g1,0

1−a/3g1,0k

]2
)

�U3/2

(4.24)

In the same way in the flow for g4 we use that there are no second
order contributions quadratic in g1,h. Finally, we write, using (4.8) and the
short memory property (namely that γ θ(h−k)g1,k �Cg1,h)

g1,h−1 −g1,h�−a
3
g1,hg1,h−1 (4.25)
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or

g1,h−1 � g1,h

1+ a
3g1,h

(4.26)

and as x
1+x is an increasing function and by induction 0<g1,h� g1,0

1− a
3 g1,0h

so that

g1,h−1 �
g1,0(1− a

3hg1,0)
−1

1+ a
3g1,0(1− a

3hg1,0)
−1

� g1,0

1− a
3g1,0(h−1)

. (4.27)

Moreover g1,h−1 = g1,h(1 + O(U)) by (4.8), and g1,h > 0 so that
g1,h−1>0.

4.3. The Choice of the Counterterms

In the previous section we have solved the flow equation for gi,h para-
metrically in any sequence ν={νh}h�1, δ={δh}h�1 such that |νh|�cUγ θh,
|δh|� cUγ θh for any h. We show now that indeed we can choose ν, δ so
that ν={νh}h�1, δ={δh}h�1 verify such a property.

Lemma 2. There exist sequences ν={νh}h�1, δ={δh}h�1 such that
|νh|� cUγ θh, |δh|� cUγ θh.

Proof. It holds that

β
(h)
δ =β(h)δ,a +β(h)δ,b (4.28)

where β(h)δ,a us given by a sum of trees with no end-points νk, δk and only

propagators g(k)L,ω (3.36); by the symmetry in the exchange x, x0 of g(k)L,ω,

and remembering that β(h)δ =∑τ [z(τ )−a(τ)] it holds that

|β(h)δ,a |�CUγ 2θh (4.29)

A similar decomposition can be done also for

β(h)ν =β(h)ν,a +β(h)ν,b (4.30)

again with

|β(h)ν,a |�CUγ 2θh (4.31)
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by the parity property g
(h)
L,ω(x,y)= −g(h)L,ω(y,x). If we want to fix ν, δ in

such a way that ν−∞ = δ−∞ =0, we must have, if (ν1, δ1)= (ν, δ):

ν=−
1∑

k=−∞
γ k−2β(k)ν (gk, δk, νk; . . . ;g1, δ1, ν1). (4.32)

δ=−
1∑

k=−∞
β
(k)
δ (gk, δk, νk; . . . ;g1, δ1, ν1). (4.33)

Note that in (4.32), (4.33) gk ≡gk(ν, δ).
If we manage to fix ν, δ as in (4.32), (4.33) we also get:

νh=−
∑

k�h
γ k−h−1β(k)ν (gk, δk, νk; . . . ;g1, δ1, ν1). (4.34)

δh=−
∑

k�h
β
(k)
δ (gk, δk, νk; . . . ;g1, δ1, ν1). (4.35)

Let Mθ be the space of sequences ν={ν−∞, . . . , ν1}, δ={δ−∞, . . . , δ1}
with small ‖ · ‖θ norm, namely the space of sequences ν, δ satisfying:

|δk|�γ θk, |νk|�γ θk

We look for a fixed point of the operator T :Mθ →Mθ defined as:

T (νh)=−
∑

k�h
γ k−h−1β(k)ν (gk(δ, ν), νk; . . . ;g1, ν1). (4.36)

T (δh)=−
∑

k�h
β
(k)
δ (gk(δ, ν), δk, νk; . . . ;g1, δ1, ν1). (4.37)

First note that, if U is sufficiently small, then T leaves Mθ invariant:
in fact

|(Tν)h|�
∑

k�h
2c1Uγ

θkγ k−h� cUγ θh |(Tδ)h|�
∑

k�h
2c1Uγ

θk � cUγ θh

(4.38)
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Furthermore we find that T is a contraction on Mθ : in fact

|(Tδ)h− (Tδ′)h| �
∑

k�h
|β(k)δ (gk(ν, δ), νk, δk; . . . )−β(k)ν (gk(ν

′, δ′), ν′
k, δ

′
k; . . . )|

� c′′Uγ θh[‖ν−ν′‖θ +‖δ− δ′‖θ ]. (4.39)

and a similar equation holds for ν. Then, a unique fixed point ν∗, δ for T
exists on Mθ .

By the above Lemma we have found δ(t̃, pF ,U), ν(t̃, pF ,U); insert-
ing them in (2.1) and using the implicit function theorem we get
pF (U,µ), t̃(U,µ).

Finally from an explicit second order computation we obtain that

zh=a[g2
1,h+g2

2,h+g2
4,h]+β�3 (4.40)

with a>0 is a suitable constant, and using the previous results on the flow
of gi,h, νh, δh we get limh→−∞ Zh

γ ηh
=1, where η=a[g2

2,−∞ +g2
4,−∞]+O(U3).

5. THE REFERENCE MODEL AND PROOF OF THEOREM 4

5.1. The Model

In order to prove the partial vanishing of the Hubbard model Beta
function expressed by (4.10), (4.11), (4.12) we introduce a reference model
written directly in terms of Grassmann variables, with an ultraviolet cut-
off and an infrared cutoff γ h with linear dispersion relation and in the con-
tinuum. We study the reference model by Renormalization Group and we
show that the Beta function of this model is asymptotically vanishing as a
consequence of Ward identities due to the formal local chiral gauge invari-
ance (which is however broken by the presence of cutoffs); then we prove
that the Beta function of the reference model coincides partly with the
Beta function of the Hubbard model, so that we can deduce the partial
vanishing of the Hubbard model Beta function from the vanishing of the
reference model Beta function.

The partition function of the reference model is

∫
PL(dψ)e

VL (5.1)
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where the propagator is

ghω,L(x −y)= 1
βL

∑

k∈DLβ

C−1
h,0(k)

e−ik(x−y)

−ik0 +ωk (5.2)

with C−1
h,0(k)=

∑0
k=−∞ f k(k0, k) and

VL =
∑

ω

∫ β/2

−β/2
dx0

∫ L/2

−L/2
dx
[
go2ψ

+
x,ω,σψ

−
x,ω,σψ

+
x,−ω,σψ

−
x,−ω,σ

+gp2ψ+
x,ω,σψ

−
x,ω,σψ

+
x,−ω,−σψ

−
x,−ω,−σ

+ g4ψ
+
x,ω,σψ

−
x,ω,σψ

+
x,ω,−σψ

−
x,ω,−σ

]
(5.3)

Note that the model is not SU(2) invariant, as the interaction depends
from the spin if go2 �=gp2 .

The Grassmann integration can be done by a multiscale analysis
essentially identical to the one described in Section 3; however the symme-
tries of the interaction imply that the local part of the effective potential
(3.29) is replaced by

LVjL =
∑

ω

∫ β/2

−β/2
dx0

∫ L/2

−L/2
dxg̃

p

2,jψ
+
x,ω,σψ

−
x,ω,σψ

+
x,−ω,σψ

−
x,−ω,σ

+g̃o2,jψ+
x,ω,σψ

−
x,ω,σψ

+
x,−ω,−σψ

−
x,−ω,−σ

+g̃4,jψ
+
x,ω,σψ

−
x2,ω,σ

ψ+
x,ω,−σψ

−
x,ω,−σ (5.4)

Note in fact that the analogue of νh, δh are vanishing by (in the limit
L,β→ ∞) parity and invariance in the exchange (x, x0)→ (x0, x); more-
over, the reference model is invariant under the total gauge transformation
ψ±

x,ω,σ → e±αω,σ ψ±
x,ω,σ for any values of αω,σ , so that terms of the form

ψ+
ω,σψ

−
,−ω,σψ

+
−ω,−σψ

−
ω,−σ cannot be generated in the integration procedure

as they violate such symmetry. Note also that, due to the compact support
of the cutoff in (5.2), the running coupling constants at scale k>h of the
theory with infrared cutoff γ h or 0 are identical.

It is easy to verify that a tree expansion similar to the one described
in Section 3.5 holds also for the reference model, and that the analogue of
Theorem 3 holds also in this case. We will prove in Section 6 the following
Lemma.
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Lemma 3. Assume that ḡ = max(|go2 |, |gp2 |, |g4|) is small enough;
then for any integer j �0, in the limit h→−∞ for a suitable constant C

|g̃o2,j −go2 |�Cḡ2 |g̃p2,j −gp2 |�Cḡ2 |g̃4,j −g4
p|�Cḡ2 (5.5)

Moreover g̃o2,j , g̃
p

2,j , g̃4,j have a limit as h→−∞.

It is an immediate corollary of Lemma 3 and Theorem 3 that 
vLk =
(g̃o2,k, g̃

p

2,k, g̃4,k) are analytic functions of 
v1 = (gp2 , gp2 , g4) around (0,0,0).
Note that analyticity in the coupling around the origin holds for the ref-
erence model and not for the Hubbard model. Finally the analogue of the
flow equations (4.8) is given by, if 
vLk = (g̃o2,k, g̃p2,k, g̃4,k)

g̃o2,j−1 = g̃o2,j + β̃2,o
j (
vLj , . . . , 
vL0 )

g̃
p

2,j−1 = g̃
p

2,j + β̃2,p
j (
vLj , . . . , 
vL0 )

g̃4,j−1 = g̃4,j + β̃4
j (
vLj , . . . , 
vL0 )

(5.6)

We can rewrite the above equations as, for j >h

g̃o2,j−1 = go2,j + β̃2,o
j (
vLj , . . . , 
vLj )+

∑

k>j

D
2,o
j,k

g̃
p

2,j−1 = g̃
p

2,j + β̃2,p
j (
vLj , . . . , 
vLj )+

∑

k>j

D̃
2,o
j,k (5.7)

g̃4,j−1 = g̃4,j + β̃4
j (
vLj , . . . , 
vLj )+

∑

k>j

D
2,o
j,k

with, for α= (2, o), (2, p),4

D̃αj,k = β̃αj (
vLj , . . . , 
vLj , 
vLk , 
vLk+1, . . . , 
vL0 )− β̃αj (
vLj , . . . , 
vLj , 
vLj , 
vLj+1, . . . , 
vL0 )
(5.8)

5.2. Vanishing of the Reference Model Beta Function

The Beta function is an analytic function of 
vLj and it can be written
as, if α= (o,2), (p,2),4

β̃αj (
vLj , . . . , 
vLj )=
∑

n1,n2,n3

bαj,n1,n2,n3
(g̃o2,j )

n1(g̃
p

2,j )
n2(g̃4,j )

n3
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We define n≡n1 +n2 +n3 and 
n= (n1, n2, n3). Note that

bαj,n1,n2,n3
=bαn1,n2,n3

+O(γ θj )

Consider bαj,n1,n2,n3
and bαk,n1,n2,n3

with k < j ; for any tree τ contrib-
uting to βk there is a tree contributing to βj ; in fact we can perform
a change of variables in the propagator gi(k) respectively k → γ j k̄ and
k → γ kk̄, so that in one case the propagator is f (γ−i+kk̄)D−1

ω (k̄) and in
the other f (γ−i+j k̄)D−1

ω (k̄)=f (γ−i+kγ−k+j k̄)D−1
ω (k̄); hence for each tree

contributing to bj there is a tree contributing to bk, in which the scale of
each vertex is shifted by j −k; there are extra contributions to bk with at
least a vertex with scale >k−j ; such trees have the root at scale k so that,
by the short memory property, bj − bk =O(γ θj ), with 0<θ < 1 a suitable
constant, and taking the limit k→−∞ we get bj =b+O(γ θj ).

We will prove the following result.

Lemma 4. Assume that Lemma 3 holds; then for any (n1, n2, n3)

bαn1,n2,n3
=0 (5.9)

Proof. The proof is by contradiction; assume that, for some 
̄n =
(n̄1, n̄2, n̄3) with n̄= n̄1 + n̄2 + n̄3


βj (
vLh , . . . , 
vLh )= 
bj,
n(g̃o2,j )n̄1(g̃
p

2,j )
n̄2(g̃4,j )

n̄3 +O(
vLj )n̄+1, (5.10)

with 
b
̄n a non vanishing vector, and that for all n1 +n2 +n3 =n� n̄−1, 
b
n
is vanishing. From Theorem 3 and Lemma 3 
vLj are analytic functions of

v1 = (go2, gp2 , g4), that is


vLj = 
v1 +
∑

n�n̄

c(j)
n (go2)

n1(g
p

2 )
n2(g4)

n3 +O((
vL1 )n̄+1) (5.11)

and for any fixed j the sequence 
cj
n is a bounded sequence. Inserting
(5.11) in the Beta function, using analyticity and equating the coefficient
of (go2)

n1(g
p

2 )
n2(g4)

n3 with n1 +n2 +n3 =n� n̄−1 we get


c(j−1)

n = 
c(j)
n +

0∑

k=j+1


d 
n
j,k +O(γ θj ) (5.12)
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where the last sum represents the contribution of 
Dj,k, so that

| 
d 
n
j,k|�γ−θ(k−j)Dn̄ sup

2�m�n−1
|
c(j)
m − 
c(k)
m | (5.13)

where we have used that 
Dj,k is at least quadratic in the running coupling
constants, and Dn̄ is a suitable constant (in j ). Note that

|
c(j−1)

n − 
c
n|� D̄n̄

j∑

j ′=−∞








0∑

k=j ′+1

γ−θ(k−j ′) sup
2�m�n−1

∣∣∣
c(j ′)

m − 
c(k)
m

∣∣∣



+γ θj ′





(5.14)

The above inequality implies by induction that, for n� n̄−1

sup
2�m�n

|
c(k)
m − 
c 
m|�Cnγ θ
2 k (5.15)

for a suitable C; assume in fact that it is true for k�j and from (5.14) we
get

|
c(j−1)

n − 
c
n| � Cn−1D̄n̄

j∑

j ′=−∞




0∑

k=j ′+1

γ−θ(k−j ′)(γ
θ
2 k +γ θ

2 j
′
)+γ θj ′





� KCn−1D̄n̄γ
θ
2 (j−1) (5.16)

so that (5.15) holds for j−1 if C�KD̄n̄. On the other hand (5.15) implies

| 
d 
n
j,k|� C̄nγ

θ
2 (j−1) (5.17)

Writing now the analogous of (5.12) for n= n̄ we get


c(j−1)

̄n = 
c(j)
̄n + 
bj,
n+ 
d 
̄n

j,k (5.18)

which can be rewritten as


c(j−1)

̄n = 
c(j)
̄n + 
b
̄n+O(γ θ

2 j ) (5.19)

so that 
c(j)
̄n is necessarily a diverging as j → ∞, and this is a contra-

diction.
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5.3. Partial Vanishing of the Hubbard Model Beta Function

(Proof of Theorem 4)

We compare the Beta functions of the reference model with the func-
tion appearing in the flow equations of the Hubbard model.

(A) Let us start considering first the reference model in the spin sym-
metric case, that is if go2,0 = g

p

2,0. In such a case by the same arguments
used in Appendix, for any kgo2,k = g

p

2,k and βo2,k = β
p

2,k, so that the flow
equation (5.6) reduces to

g̃2,h−1 = g̃2,h−1 + β̃2
h(g̃2,h, g̃4,h; . . . , g̃2,0, g̃4,0)

g̃4,h−1 = g̃4,h−1 + β̃4
h(g̃2,h, g̃4,h; . . . ; g̃2,0, g̃4,0)

It holds that the functions β̃2
h and β̃4

h essentially coincide with the
functions β2

h, β
4
h of the Hubbard model defined in (4.8); that is, if µh =

(g2,h, g4,h), for a suitable constant C

|β̃2
h(µh, . . . ,µh)−β2

h(µh, . . .µh)|�Cµ2
hγ

θh (5.20)

|β̃4
h(µh, . . . ,µh)−β4

h(µh, . . .µh)|�Cµ2
hγ

θh (5.21)

The above equations prove (4.10). In order to prove (5.20) and (5.21) we
note that by definition the only difference between β̃2

h, β̃
4
h and β2

h, β
4
h is

that in one case the model is defined on the continuum and in the other
case on the lattice. In momentum representation this means that the delta
functions in β̃ are defined as Lβδk,0δk0,0 while in β are defined as in (2.16).
The difference of the two delta functions slightly affects the non local
terms on any scale, hence it affects the beta function; however, it is easy
to show that this is a negligible phenomenon. Let us consider in fact a
particular tree τ and a vertex v ∈ τ of scale hv with 2n external fields of
space momenta k′

r , r = 1, . . . ,2n; the conservation of momentum implies
that

∑2n
r=1 σrk

′
r = 2πm, with m= 0 in the continuous model, but m arbi-

trary integer for the lattice model. On the other hand, k′
r is of order γ hv

for any r, hence m can be different from 0 only if n is of order γ−hv .
Since the number of endpoints following a vertex with 2n external fields
is greater or equal to n−1 and there is a small factor (of order µh) asso-
ciated with each endpoint, we get an improvement, in the bound of the
terms with |m|> 0, with respect to the others, of a factor exp(−Cγ−hv ).
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Hence it is easy to show that the difference between the two beta func-
tions is of order µ2

hγ
θh.

(B) In order to prove (4.11) we consider the reference model with
go2,0 �=gp2,0, so that there are three independent running coupling constants.
We have seen that, for α= (2, p), (2, o),4

β̃αh (v
L
h , . . . , v

L
h )=

∑

n1,n2,n3

bαh,n1,n2,n3
[go2,h]n1 [gp2,h]n2 [g4,h]n3 (5.22)

On the other hand we can write the functions Gαh (4.8) in the Hubbard
model, α= (2o), (2p),4, as

Gαh =
∑

m2,m3

cαh,1,m2,m3
[g1,h][g2,h]m2 [g4,h]m3 (5.23)

The coefficients cα
h,1,m2,m3

are given by sum of trees (or product of trees,
for the presence of the z1

k terms) with (in total) one end-point g1, m2 end-
points g2 and m3 end-points g4; the SU(2) invariance of the Hubbard
model implies that G2o

h =G
2p
h . To g1 and g2 correspond two terms, the

parallel or antiparallel part, see (3.35), and we can associate to the end-
points of the trees contributing to cα

h,1,m2,m3
an extra index distinguishing

the parallel or antiparallel part; then we can write

cαh,1,m2,m3
=

∑

mo1+mp1 =1

∑

mo2+mp2 =m2

cα
h,mo1,m

p

1 ,m
o
2,m

p

2 ,m3
(5.24)

It holds that

cαh,1,m2,m3
=

∑

mo2+mp2 =m2

cα
h,0,1,mo2,m

p

2 ,m3
(5.25)

that is only the spin parallel part of g1 can contribute to G2
h or G4

h; in
fact making the global gauge transformation ψ±

1,σ →eiσψ±
1,σ and ψ±

−1,σ →
ψ±

−1,σ , the antiparallel part is not invariant, while the spin parallel (and
the g2, g4 interactions) are invariant.

Finally note that the spin parallel g1 interaction is equal (up to a
sign) to the spin parallel g2 interaction, so that, for α= (2o), (2p),4

cα
0,1,mo2,m

p

2 ,m3
=−bα

mo2,m
p

2 +1,m3
=0 (5.26)
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(C) It remains to consider (4.12); we can consider equivalently the
contribution to the spin parallel or the spin antiparallel, as they are equal
by SU(2) invariance of the Hubbard model, that is G1o

h =G1p
h . We con-

sider the spin parallel part and we can write

G
1p
h =

∑

m2,m3

c
1p
h,1,m2,m3

[g1,h][g2,h]m2 [g4,h]m3 (5.27)

with

c
1p
1,m2,m3

=
∑

mo1+mp1 =1

∑

mo2+mp2 =m2

c
1p
mo1,m

p

1 ,m
o
2,m

p

2 ,m3

The single g1 interaction cannot be antiparallel, again because making the
global gauge transformation ψ±

1,σ → eiσψ±
1,σ and ψ±

−1,σ →ψ±
−1,σ , the anti-

parallel part is not invariant, while the spin parallel (and the g2, g4 inter-
actions) are invariant. Hence

c
1p
1,m2,m3

=
∑

mo2+mp2 =m2

c
1p
0,1,mo2,m

p

2 ,m3
(5.28)

and

c
1p
0,1,mo2,m

p

2 ,m3
=b2p

mo2,m
p

2 +1,m3
=0 (5.29)

as the contribution (1p) and (2p) are identical.

6. WARD IDENTITIES FOR THE REFERENCE MODEL:

PROOF OF LEMMA 3

6.1. Dyson Equations

Let us now prove (5.5), extending the analysis in refs. 5–7, to the
spinning case. We derive a number of Dyson equations relating some
Schwinger functions of the reference model. Let us start from, if ρp,ω,σ =

1
βL

∑
kψ

+
k,ω,σψ

−
k−p,ω,σ
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〈
ψ+

k1,+,σψ
−
k2,+,σψ

+
k3,−,−σψ

−
k4,−,−σ

〉
T

=g−(k4)

{
G2

−(k3)
[
go2

〈
ψ+

k1,+,σψ
−
k2,+,σ ρk1−k2,+,σ

〉
T

+gp2
〈
ψ+

k1,+,σψ
−
k2,+,σ ρk1−k2,+,−σ

〉
T

+ g4
〈
ψ+

k1,+,σψ
−
k2,+,σ ρk1−k2,−,−σ

〉
T

]

+
∫
dp
[
go2

〈
ψ+

k1,+,σψ
−
k2,+,σψ

+
k3,−,σψ

−
k4−p,−,−σ ρp,+,σ

〉
T

+
∫
dpgp2

〈
ψ+

k1,+,σψ
−
k2,+,σψ

+
k3,−,σψ

−
k4−p,−,−σ ρp,+,−σ

〉
T

+
∫
dpg4

〈
ψ+

k1,+,σψ
−
k2,+,σψ

+
k3,+,σψ

−
k4−p,+,−σ ρp,−,−σ

〉
T

]}
(6.1)

where

G2
ω(k)=

〈
ψ−

k,ω,σψ
+
k,ω,σ

〉
T

(6.2)

Similar Dyson equations holds for
〈
ψ+

k1,+,σψ
−
k2,+,σψ

−
k3,−,σψ

−
k4,−,σ

〉
T

and〈
ψ+

k1,+,σψ
−
k2,+,σψ

−
k3,+,σψ

−
k4,+,σ

〉
T

. The Renormalization Group analysis of
the preceding sections easily implies (for details, see ref. 6) that, if |k̄i | =
γ h,i=1,2,3,4

〈
ψ+

k̄1,+,σψ
−
k̄2,+,σψ

+
k̄3,−,−σψ

−
k̄4,−,−σ

〉
T

≡G4
+,σ (k̄1, k̄2, k̄3, k̄4)=γ−4hZ−2

h [go2,h+O(ḡ2
h)] (6.3)

if ḡh = supk�h(|go2,k| + |gp2,k| + |g4,k|). In the Dyson equations appear the
functions

G
2,1
ω,σ,ω′,σ ′(k −q,k,q)= 〈ψ+

k,ω,σψ
−
q,ω,σ ρk−q,ω′,σ ′

〉
T

(6.4)

G
4,1
+,σ,ω′σ ′(k1,k2,k3,k4 −p;p)

= 〈ψ+
k1,+,σψ

−
k2,+,σψ

+
k3,−,−σψ

−
k4−p,−,−σ ρp,ω′,σ ′

〉
T

(6.5)
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Either such functions or the Schwinger functions can be obtained by
deriving the Generating functional

W(φ, J )

= log
∫
PL(dψ)e

−VL(ψ)+
∑
ω,σ

∫
dx(Jx,ω,σ ψ

+
x,ω,σ ψ

−
x,ω,σ+φ+

x,ω,σ ψ
−
x,ω,σ+ψ+

x,ω,σ φ
−
x,ω,σ )

(6.6)

with respect to the external fields Jx,ω,σ or φ−
x,ω,σ .

The functions G2,1,G4,1 are related by remarkable Ward Identities to
the Schwinger functions G2,G4. In fact, by operating in (6.6) the (local)
Gauge transformation ψ±

+,σ → e±αxψ±
+,σ , ψ±

+,−σ → ψ±
+,−σ and ψ±

−,±σ →
ψ±

−,±σ and deriving with respect to φ+
y,+,σ , φ

+
z,+,σ , we get, passing to

momentum space, the following Ward Identity

D+(p)G2,1
+,σ,+,σ (k1 −k2,k1,k2) = G2

+(k1)−G2
+(k2)

+�2,1
+,σ,+,σ (k1 −k2,k1,k2) (6.7)

where

�
2,1
ω,σ,ω′,σ ′(k −q,k,q)=

〈
ψ+

k,ω,σψ
−
q,ω,σ δρk−q,ω′,σ ′

〉

T
(6.8)

δρk−q,ω,σ =
∫
dk′C(k′,k′ −q)ψ+

k′,ω,σψ
−
k′−k+q,ω,σ (6.9)

C(k+,k−)= (Ch,0(k−)−1)Dω(k−)− (Ch,0(k+)−1)Dω(k+) (6.10)

The cutoff function Ch,0 in PL(dψ) destroys the local Gauge invariance
of the theory, and it is responsible of the correction term �2,1 in (4.3). As
explained in Section 4 of ref. 5. �̄(ij)≡C(k,q)g(i)(k)g(j)(q) is non vanish-
ing if at least one among i or j is 0 or h; this means that either at least
one field in δρ is contracted at scale 0, or at least one field in δρ is con-
tracted at scale h. We can split the correction term in the following way

�
2,1
ω,σ,ω′,σ ′ =�2,1,α

ω,σ,ω′,σ ′ +�2,1,β
ω,σ,ω′,σ ′ (6.11)
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where in �2,1,α
ω,σ,ω′,σ ′ there are all the contributions with one of the fields in

δρ contracted at scale 0, and �2,1,β
ω,σ,ω′,σ ′ is the rest. It is easy to check that

∣∣∣�2,1,β
ω,σ,ω′,σ ′(k̄1 − k̄2, k̄1, k̄2)

∣∣∣� ḡh
γ−2h

Zh
(6.12)

This follows from the bound |�̄(hj)|�γ h−j γ−h−j
Zj

and noting that the factor

γ h−j gives the correct power counting for the marginal terms linear in J ,
see ref. 5; note also that the contributions of order 0 in the vLh cancels out.

The analysis of �2,1,α
ω,σ,ω′,σ ′ is more complex; there are other remarkable

identities (first discovered in ref. 6 for the spinless case) called correction
identities to the functions G2,1. It holds in fact the following Lemma.

Lemma 5. There exists functions νω,±σ such that |νω,±σ |�Cḡh and

�
2,1,α
+,σ,+,σ = νa+,σD+(p)G2,1

+,σ,+,σ
+νa+,−σD+(p)G2,1

+,σ,+,−σ +νa−,σD−(p)G2,1
+,σ,−,σ

+νa−,−σD−(p)G2,1
+,σ,−,−σ +H 2,1,α

+,σ,+,σ (6.13)

with, if |k̄1|= |k̄2|=γ h

|H 2,1,α
+,σ,+,σ (k̄1 − k̄2, k̄1, k̄2)|�C γ

−2h

Z2
h

γ θh (6.14)

for some constants C and 0<θ <1.

The above identity says that the correction �2,1,α can be written in
terms of the functions G2,1, up to a term which is smaller than O(γ θh).
We will call H 2,1

a =H 2,1,α
+,σ,+,σ +�2,1,β

+,σ,+,σ , and

|H 2,1
a (k̄1 − k̄2, k̄1, k̄2)|� ḡh γ

−2h

Zh
. (6.15)

By the phase transformation ψ±
+,−σ → e±αxψ±

+,−σ , ψ±
+,σ → ψ±

+,σ and
ψ±

−,±σ →ψ±
−,±σ , and using a correction identity similar to (6.13) we find

− νb+,σD+(p)G2,1
+,σ,+,σ + (1−νb+,−σ )D+(p)G2,1

+,σ,+,−σ
− νb−,σD−(p)G2,1

+,σ,−,σ −νb−,−σD−(p)G2,1
+,σ,−,−σ =H 2,1

b (6.16)

where H 2,1,a
b verifies a bound similar to (6.15).
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In the same way by the Gauge transformation ψ±
−,σ → e±αxψ±

−,σ ,
ψ±

−,−σ → ψ±
−,−σ and ψ±

+,±σ → ψ±
+,±σ , and using a correction identity

similar to (6.13) we find

− νc+,σD+(p)G2,1
+,σ,+,σ −νc+,σD+(p)G2,1

+,σ,+,−σ + (1−νc−,σ )D−(p)G2,1
+,σ,−,σ

− νc−,−σD−(p)G2,1
+,σ,−,−σ =H 2,1

c (6.17)

where H 2,1,a
c verifies a bound similar to (6.15).

Finally by the Gauge transformation ψ±
−,−σ → e±αxψ±

−,−σ , ψ±
−,σ →

ψ±
−,σ and ψ±

+,±σ →ψ±
+,±σ we get the following WI

− νd+,σD+(p)G2,1
+,σ,+.σ −νd+,−σD+(p)G2,1

+,σ,+,−σ
− νd−,σD−(p)G2,1

+,σ,−,σ + (1−νd−,−σ )D−(p)G2,1
+,σ,−,−σ =H 2,1

d (6.18)

Bounds like (6.15) and (6.14) hold also for H 2,1
b ,H

2,1
c ,H

2,1
d . It is easy to

see from some algebra that the above relations imply

D+(p)G2,1
+,σ,+,σ (k1 −k2,k1,k2)

=G2
+(k1)−G2

+(k2)+ (1+F 1
a )H

2,1
a +F 1

b H
2,1
b +F 1

c H
2,1
c +F 1

d H
2,1
d

(6.19)

D+(p)G2,1
+,σ,+,−σ (k1 −k2,k1,k2) = (1+F 2

a )H
2,a
a +F 2

b H
2,1
b

+F 2
c H

2,1
c +F 2

d H
2,1
d (6.20)

D−(p)G2,1
+,σ,−,σ (k1 −k2,k1,k2) = (1+F 3

a )H
2,a
a +F 3

b H
2,1
b

+F 3
c H

2,1
c +F 3

d H
2,1
d (6.21)

D−(p)G2,1
+,σ,−,−σ (k1 −k2,k1,k2) = (1+F 4

a )H
2,a
a +F 4

b H
2,1
b

+F 4
c H

2,1
c +F 4

d H
2,1
d (6.22)

with Fa,Fb,Fc,Fd are combinations of the ν, with the property that if
|νji |�Cḡ, then |Fi |�Cḡh. Then, (6.19) really provides a relation between
G2,1 and G2 up to bounded corrections.
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6.2. Proof of Lemma 5

We introduce the generating function for H 2,1
a

∫
PL(dψ)e

−VL+T1 exp
[∫

dkdpJpν
a
+,σD+(p)ψ+

k,+,σψ
−
k+p,+σ

+
∫
dkdpJp[νa+,−σD+(p)ψ+

k,+,−σψ
−
k+p,+,−σ

+νa−,σD−(p)ψ+
k,−,σψ

−
k+p,−,σ + νa−,−σD−(p)ψ+

k,−,−σψ
−
k+p,−,−σ

]

(6.23)

where

T1 =
∫
dkdpJpC(k,k +p)ψ+

k,+,σψ
−
k+p,+,σ (6.24)

The analysis proceeds essentially identical to the one of Section 4 of ref. 5.
After integrating the ψ0 field, we get in the effective potential a sum of
monomials of the form WJmψ1 . . .ψn; we extend the definition of L to
monomials of this kind by requiring that it acts non trivially only on
the terms linear in J and quadratic in ψ , as a power counting argument
shows that they are the only marginal terms.

Consider now the terms in which T1 is contracted; they are of the
form

∑

ω̃,σ̃

∫
dp
∫
dk+Jpψ̂

+
k+,ω̃,σ̃ ψ̂

−
k+−p,ω̃,σ̃ [F (−1)

2,+,σ,ω̃,σ̃ (k
+,k+ −p)

+F (−1)
1,+,σ (k

+,k+ −p)δ+,ω̃δσ,σ̃ ] (6.25)

where F (−1)
2,+,σ,ω̃,σ̃ is given by all the terms obtained contracting both the ψ

fields in T1 while F (−1)
1,+,σ are is given by the terms obtained leaving exter-

nal one of the ψ-fields of T1. Both contributions to the r.h.s. of (3.39) are
dimensionally marginal; however, the renormalization of F (−1)

1,ω,σ is trivial,
as it is of the form

F
(−1)
1,+,σ (k

+,k−)= [Ch,0(k−)−1]D+(k−)ĝ(0)ω (k+)−u0(k+)
D+(k+ −k−)

G(2)(k+)

(6.26)

or the similar one, obtained exchanging k+ with k−.
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By the oddness of the propagator in the momentum, G(2)(0) = 0,
hence we can regularize such term without introducing any local term, by
simply rewriting it as

F
(−1)
1,+,σ (k

+,k−) = [Ch,0(k−)−1]Dω(k−)ĝ(0)+ (k+)−u0(k+)
Dω(k+ −k−)

×[G(2)(k+)−G(2)(0)]. (6.27)

As shown in ref. 5, by using the symmetry property

ĝ(j)ω (k)=−iωĝ(j)ω (k∗), k = (k, k0), k∗ = (−k0, k), (6.28)

F
(−1)
2,ω,σ,ω̃,σ̃ can be written as

F−1
2,ω,σ,ω̃,σ̃ (k

+,k−)= 1
Dω(p)

[
p0A0,ω,σ,ω̃,σ̃ (k+,k−)+p1A1,ω,σ,ω̃,σ̃ (k+,k−)

]
,

(6.29)

where Ai,ω,σ,ω̃,σ̃ (k+,k−) are functions such that, if we define

LF−1
2,+,σ,ω̃,±σ = 1

D+(p)
[
p0A0,+,σ,ω̃,±σ (0,0)+p1A1,+,σ,ω̃,±σ (0,0)

]
,

(6.30)

then,

LF−1
2,+,σ,ω̃,±σ =Dω̃(p)Z3,ω̃,±σ

−1 , (6.31)

where Z3,ω̃,±σ
−1 are four suitable real constants.

Consider now the terms in which the νω,σ are contracted; we define
the localization operator on such terms as

L
∫
dkdpDω(p)W−1

ω,±σ (k,k −p)ψ+
k,ω,±σψ

−
k+p,ω,±σ

=
∫
dkdpDω(p)W−1

ω,±σ (0,0)ψ
+
k,ω,±σψ

−
k+p,ω,±σ (6.32)
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We define ν−1,ω,±σ =Z3,ω,±σ
−1 +W−1

ω,±σ we get that the local terms linear in
J are∫

dkdpJp

[
νa−1,+,σD+(p)ψ+

k,+,σψ
−
k+p,+σ +νa−1,+,−σD+(p)ψ+

k,+,−σψ
−
k+p,+,−σ

+νa−1,−,σD−(p)ψ+
k,−,σψ

−
k+p,−,σ +νa−1,−,−σD−(p)ψ+

k,−,−σψ
−
k+p,−,−σ

]

(6.33)

We can iterate the above procedure; at the integration of the generic scale
the terms quadratic and linear in J in the effective potential are obtained
contracted a T1 vertex (in such a case one of the two fields of T1 is neces-
sarily contracted at scale 0) or a νk,ω,σ vertex; in both case the preceding
analysis can be repeated and the local terms linear in J are, for k>h
∫
dkdpJp[νak,+,σD+(p)ψ+

k,+,σψ
−
k+p,+σ +νak,+,−σD+(p)ψ+

k,+,−σψ
−
k+p,+,−σ

+νak,−,σD−(p)ψ+
k,−,σψ

−
k+p,−,σ +νak,−,−σD−(p)ψ+

k,−,−σψ
−
k+p,−,−σ ]

(6.34)

We have then obtained an expansion for H
2,1
a in which new running

coupling constants appear, namely νk,ω,±σ ; the analogue of Theorem 3
ensures convergence νk,ω,±σ are small or any k>h. The beta function for
νk,ω,±σ has the following form

νk−1,ω,±σ =νk,+,±σ +β1,k
ω,±σ (v

L
k , . . . , v

L
0 )+β2,k

ω,±σ (v
L
k , νk, . . . , v

L
0 , ν0) (6.35)

where by definition β
2,k
ω,±σ (vLk , νk, . . . , v

L
0 , ν0) is obtained contracting a νj

while β1,k
ω,±σ (vLk , . . . , v

L
0 ) is obtained contracting T1 and

∣∣∣β1,k
ω,±σ (v

L
k , . . . , v

L
0 )

∣∣∣�Cḡkγ θk

for some constant 0<θ < 1. The presence of the factor γ θk in the above
bound is due to the fact that, for the support properties of the func-
tion C(k+,k−) discussed after (6.24), one of the fields of T1 is necessarily
contracted at scale 0.

In fact we can show (proceeding as in the proof of Lemma 3, or in
Section 4.6 of ref. 6) that there exists a sequence νk such that |νk,ω,±σ |�
Cḡhγ

θk by solving

νk,ω,±σ =−
k∑

k′=h+1

{
β

1,k′
ω,±σ (v

L
k , . . . , v

L
0 )+β2,k′

ω,±σ (v
L
k , νk, . . . , v

L
0 , ν0)

}
(6.36)
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This shows that there exist νω,±σ such that νk,ω,±σ =O(γ θk).
We have then find an expansion for H 2,1

a (k̄1 − k̄2, k̄1, k̄2) very simi-
lar to the one of G2,1, but in which each tree contributing to H

2,1
a (k̄1 −

k̄2, k̄1, k̄2) have an extra γ θh; in fact or there is an endpoint νk (and we
use that νk,ω,±σ =O(γ θk) and the fact that, as the dimension are negative,
the value of the tree has an extra γ θ(h−k)) or there is an endpoint T1 con-
tracted at scale 0 (hence, as the dimensions are negative, the value of the
tree has an extra γ θh).

Inserting (6.20) in the Dyson equation, and using (6.15) and (6.14),
we see that the first three addenda of the Dyson equation are given by(
g0

2 +O(ḡ2
h)
) γ−4h

Z2
h

.

We have to consider now the last three addenda in the Dyson equa-
tion; let us start by

∫
dp
[
go2

〈
ψ+

k̄1,+,σψ
−
k̄2,+,σψ

+
k̄3,−,−σψ

−
k̄4−p,−,−σ ρp,+,σ

〉
T

]
(6.37)

Let us call
G

4,1
+,σ,ω′σ ′(k1,k2,k3,k4 −p;p)

= 〈ψ+
k1,+,σψ

−
k2,+,σψ

+
k3,−,−σψ

−
k4−p,−,−σ ρp,ω′,σ ′

〉
T

(6.38)
As |k̄4| = γ h the support properties of the propagators imply that

|p|� γ + γ h� 2γ , hence we can freely multiply G4,1
+ in the r.h.s. of (6.37)

by the compact support function χ0(γ
−jm |p|), with jm= [1+ logγ 2]+1. It

follows that (6.37) can be written as

∫
dpχM(p)G

4,1
+ (p;k1,k2,k3,k4 −p)+

∫
dpχ̃M(p)G

4,1
+ (p;k1,k2,k3,k4 −p)

(6.39)

where χM(p) is a compact support function vanishing for |p| � γ h+jm−1

and

χ̃M(p)=
jm∑

hp=h+jm
fhp (p). (6.40)

Note that the decomposition of the p sum is done so that χ̃M(p) = 0
if |p| � 2γ h. It is easy to show that the first term in (6.39) is bounded
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by O

(
ḡ2
hγ

−3h

Z2
h

)
, see ref. 6. Regarding the second addend we will use the

following Ward identities

(1−νa+,σ )D+(p)G4,1
+,σ,+,σ −νa+,−σD+(p)G4,1

+,σ,+,−σ −νa−,σD−(p)G4,1
+,σ,−,σ

−νa−,−σD−(p)G4,1
+,σ,−,−σ =G4

+(k1 −p,k2,k3,k4 −p)

−G4
+(k1,k2 +p,k3,k4 −p)+H 4,1

a (k1,k2,k3,k4 −p;p) (6.41)

−νb+,σD+(p)G4,1
+,σ,+,σ + (1−νb+,−σ )D+(p)G4,1

+,σ,+,−σ −νb−,σD−(p)G2,1
+,σ,−,σ

−νb−,−σD−(p)G4,1
+,σ,−,−σ =H 4,1

b (6.42)

−νc+,σD+(p)G4,1
+,σ,+.σ −νc+,−σD+(p)G4,1

+,σ,+,−σ + (1−νc−,σ )D−(p)G4,1
+,σ,−,σ

−νc−,−σD−(p)G4,1
+,σ,−,−σ =H 4,1

c (6.43)

−νd+,σD+(p)G4,1
+,σ,+.σ −νd+,−σD+(p)G4,1

+,σ,+,−σ −νd−,σD−(p)G2,1
+,σ,−,σ

+(1−νd−,−σ )D−(p)G4,1
+,σ,−,−σ =G4

+(k1,k2,k3 −p,k4 −p)

−G4(k1,k2,k3,k4)+H 2,1
d (k1,k2,k3,k4 −p;p) (6.44)

where the functions H 4,1
i are defined in an analogous way to the functions

H
2,1
i . It is easy to see from some algebra that the above relations imply

D+(p)G4,1
+,σ,−,−σ (k1,k2,k3,k4 −p;p)

= (1+Ga1)[G4
+(k1 −p,k2,k3,k −p)−G4

+(k1 −p,k2,k3,k −p)]

+Ga2[G4
+(k1,k2,k3 −p,k4 −p)−G4(k1,k2,k3,k4)]

+(1+Ga3)H 4,a
a +Ga4H 4,1

b +G5
aH

4,1
c +G6

aH
4,1
d (6.45)

with Gia =O(ḡ). From (6.19) we can decompose
∫
dpχ̃M(p)G

4,1
+ as sum

of several terms; the one involving G4(k1,k2,k3,k4) is vanishing while
the other three terms involving the other functions G4 have a bound

O

(
ḡ2
hγ

−3h

Z2
h

)
, see ref. 6. Finally the following results holds
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Lemma 6. If the functions νω,±σ are the same as in Lemma 7, it
holds that, for i=a, b, c, d

∣∣∣∣∣

∫
dpg−(k4)

H
4,1
i

D+(p)

∣∣∣∣∣�C
ḡ2
hγ

−3h

Z2
h

(6.46)

Inserting all the above bounds in the Dyson equation (4.1) com-
puted at momenta |ki | = γ h, i = 1,2,3,4 we have completed the proof of
Lemma 3.

Lemma 6 is proved considering

G̃4
+(k1,k2,k3,k4)= ∂4

∂φ+
k1,+,σ ∂φ

−
k2,+,σ ∂φ

+
k3,−,−σ ∂Jk4

W̃

∣∣∣∣∣
φ=0

, (6.47)

where

W̃ = log
∫
P(dψ̂)e−T (ψ)+νa1 T1(ψ)+νa2 T2(ψ)+νa3 T3(ψ)+νa4 T4(ψ)+

∑
ω

∫
dx[φ+

x,ωψ̂
−
x,ω+ψ̂+

x,ωφ
−
x,ω ],

(6.48)

T (ψ)= 1
Lβ

∑

p

χ̃M(p)
1
Lβ

∑

k

C+(k,k −p)
D+(p)

(ψ̂+
k,+,σ ψ̂

−
k−p,+,σ )ψ̂

+
k4−p,−,−σ Ĵk4 ĝ−(k4),

(6.49)

T1(ψ)= 1
Lβ

∑

p

χ̃M(p)
1
Lβ

∑

k

(ψ̂+
k,+,σ ψ̂

−
k−p,+,σ )ψ̂

+
k4−p,−,−σ Ĵk4 ĝ−(k4),

(6.50)

T2(ψ)= 1
Lβ

∑

p

χ̃M(p)
1
Lβ

∑

k

(ψ̂+
k,+,−σ ψ̂

−
k−p,+,−σ )ψ̂

+
k4−p,−,−σ Ĵk4 ĝ−(k4).

(6.51)

T3(ψ)= 1
Lβ

∑

p

χ̃M(p)
1
Lβ

∑

k

D−(p)
D+(p)

(ψ̂+
k,−,σ ψ̂

−
k−p,−,σ )ψ̂

+
k4−p,−,−σ Ĵk4 ĝ−(k4).

(6.52)

T4(ψ)= 1
Lβ

∑

p

χ̃M(p)
1
Lβ

∑

k

D−(p)
D+(p)

(ψ̂+
k,−,−σ ψ̂

−
k−p,−,−σ )ψ̂

+
k4−p,−,−σ Ĵk4 ĝ−(k4).

(6.53)
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It holds that

G̃4
+(k̄1, k̄2, k̄3, k̄4)=

∫
dpg−(k4)

H
4,1
i

D+(p)
(6.54)

Note that the expansion of G̃4+ is very similar to the expansion of G4+,
except for the presence of a special vertex associated to J . The proof of
the bound (6.46) is essentially identical to the one for the spinless case of
ref. 6, to which we refer for the technical details.

7. CORRELATION FUNCTIONS

Once that the multiscale analysis of the partition function is com-
pleted, it is possible to apply the same ideas and methods to the Grass-
mann integrals giving the Schwinger function or the correlations; as the
analysis is essentially identical to the one in ref. 4, we will give only the
main ideas referring to Section 5 of ref. 4 for details. The density-density
correlation can be written in terms of a Grassmann integral in the follow-
ing way

〈ρ(x)ρ(y)〉T =〈ρ(x)ρ(y)〉−〈ρ(x)〉 〈ρ(y)〉= ∂2S
∂φ(x)∂φ(y)

(7.1)

where

S(φ)= log
∫
P(dψ)e−V−∑σ

∫
dxφ(x)ψ+

x,σ ψ
−
x,σ (7.2)

We shall evaluate S in a way which is very close to that used for the
integration of the partition function in Section 2. We introduce the scale
decomposition described above and we perform iteratively the integration
of the single scale fields, starting from the field of scale 1.

After integrating the fields ψ(1), . . . ,ψ(h+1) we find

eS(φ)= e−LβEh+S(h+1)(φ)

∫
PZh,Ch(dψ

�h)e−V(h)
(√
Zhψ

(�h))+B(h)
(√
Zhψ

(�h),φ
)
,

(7.3)

where PZh,σh,Ch(dψ
(�h)) and Vh are given by (3.15) and (3.16), respec-

tively, while S(h+1) (φ), which denotes the sum over all the terms depen-
dent on φ but independent of the ψ field, and B(h)(ψ(�h), φ), which
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denotes the sum over all the terms containing at least one φ field and two

ψ fields, can be represented in the form, if
∫

dx = ∫
β
2

− β
2

dx0
∑
x∈�

S(h+1)(φ)=
∞∑

m=1

∫
dx1 · · ·dxmS(h+1)

m (x1, . . . ,xm)

[
m∏

i=1

φ(xi )

]
(7.4)

B(h)
(
ψ(�h), φ

)=
∞∑

m=1

∞∑

n=1

∑

σ ,ω

∫
dx1 · · ·dxmdy1 · · ·dy2n

·B(h)
m,2n,σ ,ω(x1, . . . ,xm;y1, . . . ,y2n)

[
m∏

i=1

φ(xi )

][
2n∏

i=1

ψ
(�h)σi
yi ,ωi

]
. (7.5)

Since the field φ is equivalent, from the point of view of dimensional con-
siderations, to two ψ fields, the only terms in the r.h.s. of (7.5) which are
not irrelevant are those with m= 1 and n= 1, which are marginal. Hence
we extend the definition of the localization operator L, so that its action
on B(h)

(
ψ(�h), φ

)
is described in the following way, by its action on the

kernels B(h)
m,2n,σ,ω(p,k1, . . . ,kn):

(1) if m=1, n=1 then

LB(h)1,2,σ,ω(p;k1,k2)=B(h)1,2,σ,ω(0;0,0) (7.6)

(2) L=0 in all the other cases
It follows that

LB(h)
(
ψ(�h), φ

)
= Z

(1)
h

Zh
F
(�h)
1 + Z

(2)
h

Zh
F
(�h)
2 , (7.7)

where Z(1)h and Z
(2)
h are real numbers, such that Z(1)1 =Z(2)1 =1 and

F
(�h)
1 =

∑

ω,σ

∫
dxφ(x)e2iωpF xψ

(�h)+
x,ω,σ ψ

(�h)−
x,−ω,σ , (7.8)

F
(�h)
2 =

∑

σ=±1

∫
dxφ(x)ψ(�h)σx,ω,σ ψ

(�h)−
x,ω,σ . (7.9)
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By using the notation of Section 2, we can write the integral in the
r.h.s. of (7.3) as

e−Lβth
∫
P
Z̃h−1,Ch

(dψ(�h))e−Ṽ(h)(
√
Zhψ

(�h))+B(h)(
√
Zhψ

(�h),φ)

= e−Lβth
∫
PZh−1,Ch−1(dψ

(�h−1))

×
∫
P
Zh−1,f̃

−1
h
(dψ(h))e−V̂(h)(

√
Zh−1ψ

(�h))+B̂(h)(
√
Zh−1ψ

(�h),φ),

(7.10)

where V̂(h)(
√
Zh−1ψ

(�h)) is defined as in Section 3 and

B̂(h)(
√
Zh−1ψ

(�h), φ)=B(h)(
√
Zhψ

(�h), φ). (7.11)

B(h−1)(
√
Zh−1ψ

(�h−1), φ) and S(h)(φ) are then defined through

e−V(h−1)(
√
Zh−1ψ

(�h−1))+B(h−1)(
√
Zh−1ψ

(�h−1),φ)−LβẼh+S̃(h)(φ)

=
∫
P
Zh−1,f̃

−1
h
(dψ(h))e−V̂(h)(

√
Zh−1ψ

(�h))+B̂(h)(
√
Zh−1ψ

(�h),φ).

(7.12)

Of course also the new renormalization constants related to the den-
sity-density correlation function obey to a Beta function equation of the
form

Z
(i)

h−1

Z
(i)
h

=1+ z(i)h , i=1,2, (7.13)

where z
(1)
h and z

(2)
h are some quantities of order ḡh. It turns out that

limh→−∞
Z1
h

γ η1h
=1+O(U) while limh→−∞Z1

h=1+O(U), with η1 =−bU +
O(U2) and b> 0 is a suitable constant. The bounds for the expansion of
the Schwinger function or the correlation functions are done exactly as in
Section 5 of ref. 4; to the first term in (1.9) or to the first two terms in
(1.12) contribute only trees with only endpoints with scale � 0; the other
trees have at least an endpoint at scale 1 so that by the short memory
property they have a faster decay.
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8. THE HUBBARD MODEL IN A MAGNETIC FIELD

We only sketch the analysis when there is a magnetic field as it is
indeed very similar to analysis of the vanishing magnetic field case.

The presence of a magnetic field destroys the SU (2) spin symmetry.
The counterterms are introduced by the following definition

t̃= t−
∑

σ

δσ cospσF =µ+ sign (σ )h−νσ (8.1)

This means that V in the partition function (2.5) is replaced by

V = U

∫ β/2

−β/2
dx0

∑

x

ψ+
x,+ψ

−
x,+ψ

+
x,−ψ

−
x,− +

∫ β/2

−β/2
dx0

∑

x,σ

νσψ
+
x,σψ

−
x,σ

+
∫ β/2

−β/2
dx0

∑

x,y,σ

δσ tx,yψ
+
x,σψ

−
x,σ (8.2)

The ultraviolet and infrared integration are done as in §2,§3, with
the difference that for h� h̄ only quartic monomials verifying ‖∑4

i=1 εiωi
p
σi
F ‖=0 (instead of (3.18)) are present in the effective potential. The defini-

tion of L on the quartic terms is similar to (3.19) with the difference that
the delta function in the (3.19) is replaced by δ(

∑4
i=1 εiωip

σi
F ). This means

that the quartic marginal terms verify
∑4
i=1 εiωip

σi
F =0 mod. 2π and this

condition forbids the configuration of ω given by the second of (3.22), if
h is small enough, as pF (σ)− pF (−σ)+ nπ �= 0; in other words there is
no the analogue of the gp1 -terms in the effective potential. Moreover we
are assuming in Theorem 2 that | cos−1(µ+h)+ cos−1(µ−h)−π |� C̄ for
some constant C; this implies that the configuration (ω,−ω,ω,−ω) is not
allowed.

The wave function renormalization depends by σ , that is Zh ≡Zh,σ ,
and the relevant part of the effective potential is given by

LV̂(h)
(√
Zh−1ψ

(�h))

=
∑

σ

{
δh,σFa,σ (

√
Zh−1ψ

(�h)+γ hνh,σFn,σ (
√
Zh−1ψ

(�h))

+gp2,h,σ F2,σ,−σ (
√
Zh−1ψ

(�h)+go2,h,σ F2,σ,σ (
√
Zh−1ψ

(�h)

+g4,h,σ F4,σ,−σ (
√
Zh−1ψ

(�h) (8.3)

There are then in the h �= 0 case 4 quadratic and 6 quartic running
coupling constants; Theorem 3 is still valid if they are small enough.
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We can choose νσ , δσ so that νh,+, νh,−, δh,+, δh,− are O(ḡhγ
θh); this is

shown by a fixed point argument essentially identical to Lemma 2. The
four quartic running coupling gih obeys to equations of the form, if
i= (2o+), (2o−), (2p+), (2p−), (4+), (4−)

gih−1 =gih+βih+Rih (8.4)

where βih is given by the sum of trees with no endpoints at scale i,
only gkL propagators and no endpoints to which are associated νk, δk; if
νh,+, νh,−, δh,+, δh,− are O(ḡhγ θh) then, as in Section 5, Rih�Cḡhgθh.

The flow of the quartic running constants is even simpler as the one
in the h=0 case as |βih|�Cḡhgθh. This can be proved as in §6 introducing
the following reference model, with

VL =
∑

ω,σ

∫
dk1 · · ·

∫
dk4δ

(
∑

i

εiki

)[
go2,σψ

+
k1,ω,σ

ψ−
k2,ω,σ

ψ+
k3,−ω,σψ

−
k4,−ω,σ

+gp2,σψ+
k1,ω,σ

ψ−
k2,ω,σ

ψ+
k3,−ω,−σψ

−
k4,−ω,−σ

+ g4,σψ
+
k1,ω,σ

ψ−
k2,ω,σ

ψ+
k3,ω,−σψ

−
k4,ω,−σ

]
(8.5)

In this reference model the interaction has five independent parameters,
instead of three as in the previous case. We can analyze by RG the ref-
erence model and we get the couplings g̃p

h,2,+, g̃
p

h,2,−, g̃
o
h,2,+, g̃

o
h,2,−, g̃

o
h,4,+,

g̃o
h,4,−. The proof that their values remains close to the initial value is

essentially identical to the analysis in Section 6; (8.6) is replaced by

〈
ψ+

k1,+,σψ
−
k2,+,σψ

+
k3,−,−σψ

−
k4,−,−σ

〉
T

=g−,−σ (k4){G2
−,−σ (k3)[g

o
2,σ

〈
ψ+

k1,+,σψ
−
k2,+,σ ρk1−k2,+,σ

〉
T

+gp2,−σ
〈
ψ+

k1,+,σψ
−
k2,+,σ ρk1−k2,+,−σ

〉
T

+g4,−σ
〈
ψ+

k1,+,σψ
−
k2,+,σ ρk1−k2,−,−σ

〉
T

]

+
∫

dp[go2,σ
〈
ψ+

k1,+,σψ
−
k2,+,σψ

+
k3,−,σψ

−
k4−p,−,σ ρp,+,σ

〉
T

+
∫

dpgp2,−σ
〈
ψ+

k1,+,σψ
−
k2,+,σψ

+
k3,−,σψ

−
k4−p,−,σ ρp,+,−σ

〉
T

+
∫

dpg4,−σ
〈
ψ+

k1,+,σψ
−
k2,+,σψ

+
k3,+,σψ

−
k4−p,+,σ ρp,+,−σ

〉
T

]} (8.7)

By using the Ward identities of Section 7 one gets that g̃p
h,2,+, g̃

p

h,2,−, g̃
o
h,2,+,

g̃o
h,2,−, g̃

o
h,4,+, g̃

o
h,4,− remain close to the initial value, and this implies that
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βih is asymptotically vanishing. This means that in presence of a magnetic
field one has Luttinger liquid behaviour also with a attractive interaction;
of course this will be true only if h̄ is non vanishing, and it is O(hα) for
some constant α>0 (in fact h̄ is finite if |pσF −p−σ

F | �=0).

APPENDIX A

A.1. Ultraviolet Decomposition

It is convenient to introduce an ultraviolet cut-off N by writing

g[1,N ](x,y)=
N∑

n=0

g(n)(x,y) (A.1)

where

g(n)(x,y)= 1
Lβ

∑

k∈D
f̂u.v.(k)hn(k0)

e−ik(x−y)

−ik0 − t̃ cos k+ t̃ cospF
(A.2)

with h0(k0) = χ(k0) and hn(k0) = χ(γ−n+1k0) − χ(γ−nk0); it holds that
limN→∞ g[1,N ](x,y)=g(u.v.)(x,y) and, for any integer K

|g(n)(x,y)|� CK

1+ (γ n|x0 −y0|+ |x−y|)K (A.3)

We define

V (0)(φ)= lim
N→∞

log
1

N0

∫
P(dψ [1,N ])eV(ψ

[1,N ]+φ) (A.4)

We can integrate iteratively scale by scale, and after the integration of the
scales N,N −1, . . . , k+1 we get

V (k)(φ)= lim
N→∞

log
1

Nk

∫
P(dψ [1,k])eV(ψ

[1,k]+φ) (A.5)

It is well known that V (k) can be written as sum over trees τ similar to the
ones in Section 3 (see for instance (15) for the analysis of the ultraviolet
problem in the Hubbard model in any dimension) each of them bounded
by, if mv is the number of endpoints of type U following the vertex v on τ

Cn[max(U, |ν|, |δ|)]mγ−n(m−1)
∏

v

γ−(nv−nv′ )(mv−1) (A.6)
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One can have mv = 1 only if v is a trivial vertex following the first
non trivial vertices on τ ; then the terms with mv = 1 correspond to self-
contractions or tadpoles; note however that no divergence are associate to
self-contractions as g(n,N)(x,x) is bounded uniformly in N . Consider then
a generic tree with all the sets Pv assigned; the simple expectations over
the trivial vertices in the tree with mv = 1 before the first non trivial ver-
tex v̄ can be explicitly computed, giving ψ+(�nv̄)

x ψ
−(�nv̄)
x g(nv̄,M)(x,x); the

rest of the tree is bounded by an expression like (A.6) with mv>1, so that
by summing over all the scales and the trees the bound (2.17) is found.

A.2. Spin Symmetry

Finally the symmetry property (2.18) follows from the SU(2) invari-
ance of the Hubbard model. A direct way to check this property consists
in expanding the truncated expectations corresponding to the integration
of ψu.v. in terms of Feynmann graphs. The interaction can be also writ-
ten in the following way, making more explicit the spin symmetry of the
Hubbard model

V = U

2

∫
dx0

∑

x

(
∑

σ

ψ+
x,σψ

−
x,σ

)(
∑

σ ′
ψ+

x,σ ′ψ
−
x,σ ′

)
+ν

∑

x,σ

∫
dx0ψ

+
x,σψ

−
x,σ

+δ
∑

σ

∫
dx0

∑

x,σ

tx,yψ
+
x,σψ

−
y,σ (A.7)

As usual, the Feymann graphs are obtained representing as vertices the
three addenda in (A.7) with four or two oriented half-lines, and contract-
ing in all possible ways the half lines with consistent orientation; it is
also convenient to represent the quartic term as a couple of two half-
lines connected by a wigghly line, representing the interaction. The value
of each Feynmann graph is obtained associating to each line a propagator
gu.v(x;y) and integrating over all the coordinates; the contributions from
graphs with four uncontracted half lines has in general the form

∫
dx1 · · ·

∫
dx4ψ

+
x1,σ

ψ−
x2,σ

ψ+
x3,σ

′ψ
+
x4,σ

′W
0
σ,σ ′(x1, . . . ,x4) (A.8)

In order to prove that the kernel is spin-independent, that is

Wσ,σ =Wσ,−σ (A.9)
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we note that in the Feynmann graph we can identify a line of propagators
gu,v(x,y) (possibly a point) connecting ψ+

x1,σ
with ψ−

x2,σ
, and another line

connecting ψ+
x3,σ

′ with ψ−
x3,σ

′ ; on such two lines there are points to which
are attached wiggly lines to which are attached the fields

∑
σ ′′ ψ+

σ ′′ψ
−
σ ′′ ; the

crucial point is that such expression does not depend from the fact that
it is connected by the wigghly line to a σ or σ ′ line. Hence, the contri-
butions to W

(0)
σ,σ and W

(0)
σ,−σ can possibly differ only because in one case

there is a line of propagators σ and in the other case −σ ; but the propa-
gators are spin-independent hence the values of such two contributions are
identical (and independent from σ ). The same argument can be repeated
to prove that W(h)

σ,σ =W(h)
σ,−σ , by performing a single scale integration with

propagator g(�h)(x,y).
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